首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
In this paper, a nonlinear dynamic model of a quarter vehicle with nonlinear spring and damping is established. The dynamic characteristics of the vehicle system with external periodic excitation are theoretically investigated by the incremental harmonic balance method and Newmark method, and the accuracy of the incremental harmonic balance method is verified by comparing with the result of Newmark method. The influences of the damping coefficient, excitation amplitude and excitation frequency on the dynamic responses are analyzed. The results show that the vibration behaviors of the vehicle system can be control by adjusting appropriately system parameters with the damping coefficient, excitation amplitude and excitation frequency. The multi-valued properties, spur-harmonic response and hardening type nonlinear behavior are revealed in the presented amplitude-frequency curves. With the changing parameters, the transformation of chaotic motion, quasi-periodic motion and periodic motion is also observed. The conclusions can provide some available evidences for the design and improvement of the vehicle system.  相似文献   

2.
Analytical results are presented on chaotic vibrations of a post-buckled L-shaped beam with an axial constraint. The L-shaped beam is composed of two beams which are a horizontal beam and a vertical beam. The two beams are firmly connected with a right angle at each end. The beams joint with the right angle is attached to a linear spring. The other ends are firmly clamped for displacement. The L-shaped beam is compressed horizontally via the spring at the beams joint. The L-shaped beam deforms to a post-buckled configuration. Boundary conditions are required with geometrical continuity of displacements and dynamical equilibrium with axial force, bending moment, and share force, respectively. In the analysis, the mode shape function proposed by the senior author is introduced. The coefficients of the mode shape function are fixed to satisfy boundary conditions of displacements and linearized equilibrium conditions of force and moment. Assuming responses of the beam with the sum of the mode shape function, then applying the modified Galerkin procedure to the governing equations, a set of nonlinear ordinary differential equations is obtained in a multiple-degree-of-freedom system. Nonlinear responses of the beam are calculated under periodic lateral acceleration. Nonlinear frequency response curves are computed with the harmonic balance method in a wide range of excitation frequency. Chaotic vibrations are obtained with the numerical integration in a specific frequency region. The chaotic responses are investigated with the Fourier spectra, the Poincaré projections, the maximum Lyapunov exponents and the Lyapunov dimension. Applying the procedure of the proper orthogonal decomposition to the chaotic responses, contribution of vibration modes to the chaotic responses is confirmed. The following results have been found: The chaotic responses are generated with the ultra-subharmonic resonant response of the two-third order corresponding to the lowest mode of vibration. The Lyapunov dimension shows that three modes of vibration contribute to the chaotic vibrations predominantly. The results of proper orthogonal decomposition confirm that the three modes contribute to the chaos, which are the first, second, and third modes of vibration. Moreover, the results of the proper orthogonal decomposition are evaluated with velocity which is equivalent to kinetic energy. Higher modes of vibration show larger contribution to the chaotic responses, even though the first mode of vibration has the largest contribution ratio.  相似文献   

3.
Numerical simulations of nonlinear responses of a flat plate subject to decoupled fluid loading are carried out. Under clamped boundary conditions and subject to forced vibration at its natural frequency corresponding to the (5,1) mode, the various response modes of the plate are determined. It is found that increasing the excitation amplitude, the response changed from periodic to chaotic. In addition, the fluid-wall shear stresses are found to change the response from linear to nonlinear and vice versa depending on their magnitudes. When a static pressure load is combined with fluid-wall shear stresses and low excitation amplitude, the resulting response was chaotic.  相似文献   

4.
Since Newton first considered the motion of a spherical pendulum over 200 years ago, many researchers have studied its dynamic response under a variety of conditions. The characteristic of the problem that has invited so much investigation was that a spherical pendulum paradigms much more complex phenomena. Understanding the response of a paradigm gives an almost multiplicative effect in the understanding of other phenomena that can be modeled as a variant of the paradigm. The spherical pendulum has been used to damp irregular motion in helicopters and on space stations as well as for many other applications. In this study an inverted impacting spherical pendulum with large deflection was investigated. The model was designed to approximate an ideal pendulum, with the pendulum bob contributing the vast majority of the mass moment of inertia of the system. Two types of bearing mechanisms and tracking devices were designed for the system, one of which had low damping coefficient and the other with a relatively high damping coefficient. An experimental investigation was performed to determine the dynamics of an inverted, impacting spherical pendulum with large deflection and vertical parametric forcing. The pendulum system was studied with nine different bobs and two different base configurations. During the experiments, the frequency of the excitation remained between 24.6 and 24.9 Hz. It was found that sustained conical motions did not naturally occur. The spherical pendulum system was analyzed to determine under what conditions the onset of Type I response (a repetitive motion in which the pendulum bob does not traverse through the apex. The bob strikes the same general area of the restraint without striking the opposite side of the restraint.), sustainable Type II response (this is the repetitive motion in which the pendulum bob traverses through the apex. The bob strikes opposite sides of the restraint.), and mixed mode response (motion in which the pendulum bob randomly strikes either the same area of the restrain or the opposite side of the restraint) occurred.  相似文献   

5.
梁超  马洪业  王珂  严博 《力学学报》2023,55(5):1181-1194
双稳态俘能器可实现宽频和高效的俘能效果.目前的研究主要在双稳态结构中接入单一电阻电路进行俘能.本文将非线性RLC (电阻-电感-电容)谐振电路引入到三弹簧式双稳态结构中,构建两自由度非线性系统,以实现俘能特性的提升.设计永磁体与线圈的构型,获得了非线性机电耦合系数.推导并得到了两自由度非线性俘能器的控制方程.利用谐波平衡法推导得到了系统的电流与位移的频率响应关系.基于雅可比矩阵对解的稳定性进行了判别.将解析解与数值解进行了对比验证.结果表明,在双稳态俘能器中引入非线性二阶谐振电路不仅有利于低频俘能,还可进一步提升俘能响应,拓宽俘能带宽.相同的电路参数下,与线性电路相比非线性电路可通过电流的倍频现象实现结构更低频率的能量俘获.减小谐振电路与双稳态结构共振频率之比,增加基础激励幅值,减小静平衡点之间的距离均可提升俘能器的俘能效果.通过调控谐振电路与双稳态共振频率之比和基础激励幅值等参数,可实现系统单倍周期响应、多倍周期响应及混沌响应之间的切换.  相似文献   

6.
A linear oscillator (LO) coupled with two vibro-impact (VI) nonlinear energy sinks (NES) in parallel is studied under periodic and transient excitations, respectively. The objective is to study response regimes and to compare their efficiency of vibration control. Through the analytical study with multiple scales method, two slow invariant manifolds (SIM) are obtained for two VI NES, and different SIM that result from different clearances analytically supports the principle of separate activation. In addition, fixed points are calculated and their positions are applied to judge response regimes. Transient responses and modulated responses can be further explained. By this way, all analysis is around the most efficient response regime. Then, numerical results demonstrate two typical responses and validate the effectiveness of analytical prediction. Finally, basic response regimes are experimentally observed and analyzed, and they can well explain the complicated variation of responses and their corresponding efficiency, not only for periodic excitations with a fixed frequency or a range of frequency, but also for transient excitation. Generally, vibration control is more effective when VI NES is activated with two impacts per cycle, whatever the types of excitation and the combinations of clearances. This observation is also well reflected by the separate activation of two VI NES with two different clearances, but at different levels of displacement amplitude of LO.  相似文献   

7.
This paper presents numerical results on chaotic vibrations of a shallow cylindrical shell-panel under harmonic lateral excitation. The shell, with a rectangular boundary, is simply supported for deflection and the shell is constrained elastically in an in-plane direction. Using the Donnell--Mushtari--Vlasov equation, modified with an inertia force, the basic equation is reduced to a nonlinear differential equation of a multiple-degree-of-freedom system by the Galerkin procedure. To estimate regions of the chaos, first, nonlinear responses of steady state vibration are calculated by the harmonic balance method. Next, time progresses of the chaotic response are obtained numerically by the Runge--Kutta--Gill method. The chaos accompanied with a dynamic snap-through of the shell is identified both by the Lyapunov exponent and the Poincaré projection onto the phase space. The Lyapunov dimension is carefully examined by increasing the assumed modes of vibration. The effects of the in-plane elastic constraint on the chaos of the shell are discussed.  相似文献   

8.
The four modes of vibration of an isotropic rectangular plate with an inclined crack are investigated. It is assumed that the crack remains continuous and its center is located at the center of the plate. The governing nonlinear equation of the transverse vibration of the plate with the plate boundary conditions being simply-supported on all edges is developed. The multiple scale perturbation method is utilized as the solution procedure to find the steady-state frequency response equations for all the four modes of vibration. The equations for the free and forced vibrations are derived and their frequency responses are presented. A special case of large-scale excitation force has also been considered. The parameter sensitivity analysis for the angle of crack, length of crack and the position of the external applied excitation force is performed. It has been shown that according to the aspect ratio of the plate, the vibration modes can have either nonlinear hardening effect or nonlinear softening behavior.  相似文献   

9.
Electromagnetic and mechanical forces are main reasons resulting in vibrations in hydraulic generating set. The non-symmetric air-gap between the rotor and stator creates an attraction force called unbalanced magnetic pull (UMP). The UMP can produce large oscillations which will be dangerous to the machines. In this paper, the nonlinear dynamic characteristics of a rotor-bearing system with rub-impact for hydraulic generating set under the UMP are studied. The rubbing model is established based on the classic impact theory. Through the numerical calculation, the excitation current, mass eccentricity, stiffness of shaft and radial stiffness of stator are used as control parameters to investigate their effect on the system, by means of bifurcation diagrams, Poincaré maps, trajectories and frequency spectrums. Various nonlinear phenomena including periodic, quasi-periodic and chaotic motions are observed. The results reveal that the UMP has significant influence in the response of the rotor system that the continuous increase in the excitation current induces the alternation of quasi-periodic and chaotic motions, the co-occurrence of oil whip and rub in a wide excitation range aggravates the vibration and leads to the instability of the system. In addition, the large eccentricity and radial stiffness of stator, as well as the small stiffness of shaft may lead to the occurrence of full annular rubbing while increasing the stiffness of the shaft can play an important role of suppressing the chaotic motion, reducing the vibration and improving stability of the system.  相似文献   

10.
张运法  孔宪仁 《力学学报》2023,55(4):972-981
非线性能量阱是一种振动能量吸收装置,其在结构振动抑制中具有十分重要的作用.文章对具有组合非线性阻尼非线性能量阱的系统进行振动抑制相关的分析.首先对具有组合非线性阻尼非线性能量阱的系统进行理论模型的描述,对系统模型的运动方程利用复变量平均法进行推导,得到系统的慢变方程.其次对系统的慢变方程运用多尺度法进行强调制响应的分析,通过对系统进行慢不变流形和相轨迹的研究,描述系统强调制响应发生的条件基础.此外,还利用一维映射对系统进行分析,揭示外激励幅值对强调制响应存在时频率失谐系数取值区间的影响规律.最后利用能量谱、时间响应和庞加莱映射对耦合组合非线性阻尼非线性能量阱系统进行了振动抑制的相关研究,揭示组合非线性阻尼的非线性能量阱不同阻尼比、阻尼和刚度对其振动抑制效果的影响规律,得出组合非线性阻尼非线性能量阱和主结构响应存在一致性的现象,并验证所提出的组合非线性阻尼非线性能量阱模型具有较好的振动抑制能力.  相似文献   

11.
This paper adds a negative velocity feedback to the dynamical system of twin-tail aircraft to suppress the vibration. The system is represented by two coupled second-order nonlinear differential equations having both quadratic and cubic nonlinearities. The system describes the vibration of an aircraft tail subjected to both multi-harmonic and multi-tuned excitations. The method of multiple time scale perturbation is adopted to solve the nonlinear differential equations and obtain approximate solutions up to the third order approximations. The stability of the proposed analytic solution near the simultaneous primary, combined and internal resonance is studied and its conditions are determined. The effect of different parameters on the steady state response of the vibrating system is studied and discussed by using frequency response equations. Some different resonance cases are investigated numerically  相似文献   

12.
李晓玉  岳宝增 《力学学报》2019,51(5):1448-1454
以充液航天器为工程背景,借助多尺度方法研究刚--液耦合动力学系统非线性动力学特性.利用多维模态方法,将描述横向外激励下圆柱贮箱中液体非线性晃动的自由边界问题转换为液体模态系数相互耦合的有限维非线性常微分方程组.推导液体晃动产生的作用于贮箱壁的晃动力和晃动力矩的解析表达式,进而建立航天器刚体部分平动和液体晃动耦合的非线性动力学方程组.应用多尺度方法对刚--液耦合系统的动力学特性进行解析分析,通过固有频率的特征方程求解耦合系统固有频率,推导外激励频率接近耦合系统第一阶固有频率时液体晃动稳态解的幅值频率响应方程.结合数值方法,研究了液体晃动稳态解的幅值频率响应曲线和激励--幅值响应曲线.结果表明, 随充液比变化,液体晃动稳态解的幅值频率响应曲线会发生软、硬弹簧特性转换现象和"跳跃"现象;幅值频率响应曲线的软、硬弹簧特性转换点受重力加速度和弹簧刚度系数影响;以上所得研究结果表明,考虑非线性效应时的刚--液耦合系统动力学特性与传统的线性系统模型所显示的动力学特性具有本质区别.本文的研究工作对进一步分析充液航天器刚--液耦合非线性动力学特性具有重要参考价值.   相似文献   

13.
单自由度参数振动系统非线性响应的若干特征   总被引:6,自引:0,他引:6  
用数值积分方法,分析了无阻尼单自由度参数振动系统在给定的单频刚度激励和单频外载荷激振时的非线性动力学响应特性。研究表明了参数振动问题的主要特征:1)单频激励多频响应;2)多频响应中各谐波的分布具有特殊的规律;3)系统具有多频共振特性。  相似文献   

14.
15.
Li  Zhihong  Yao  Jialing  Xu  Youlin 《Meccanica》2022,57(5):1173-1191

Asymmetric damping forces induce the equilibrium position of the isolated body to shift downward. Inspired by this phenomenon, this paper proposes the novel concept of shifting an isolated body based on the vibration of nonlinear systems with asymmetric damping forces. To verify the feasibility of this concept, a piecewise smooth isolation system is established. The incremental harmonic balance method is used to analyze the nonlinear vibration system and to obtain a steady-state analytical solution. The accuracy of the solution is verified by the Runge–Kutta method. Based on the analytical solution, the influences of some key parameters on the system vibration response are analyzed, revealing that the shift in the isolated body height increases with increasing excitation amplitude and damping asymmetry ratio. Additionally, this shift first increases and then decreases with increasing excitation frequency, reaching a peak near the natural frequency of the intermediate body. Finally, considering the complex structure, high energy consumption, and slow response of active suspension actuators, the proposed concept is applied to the tilt control of a vehicle. The simulation results show that the proposed methodology based on this concept can tilt a vehicle body to a certain angle in the turning direction, enabling the use of a semi-active actuator for vehicle tilt control to realize the control effect achieved by an active actuator.

  相似文献   

16.
The paper presents the characteristics of a new type of nonlinear dynamic vibration absorber for a main system subjected to a nonlinear restoring force under primary resonance. The absorber is connected to the main system by a link in order to be excited with twice the frequency of the motion of the main system. The natural frequency of the absorber is tuned to be twice the natural frequency of the main system, in contrast to autoparametric vibration absorber, whose natural frequency is tuned to be one-half the natural frequency of the main system. The presented absorber is not excited through the autoparametric resonance, i.e., no trivial equilibrium state exists. Therefore, the absorber always oscillates because of the motion of the main system and cannot be trapped by Coulomb friction acting on the absorber, in contrast to the autoparametric vibration absorber. Under small excitation amplitude, this absorber does not produce an overhang in the frequency response curve, which occurs because of the use of the conventional autoparametric vibration absorber; the overhang renders the response amplitude larger than that in the case without an absorber. In addition, the absorber removes the hysteresis in the frequency response curve caused by the nonlinearity of the restoring force acting on the main system. Regarding large excitation amplitude, the response amplitude in the main system can be decreased by increasing the damping of the absorber, but that decrease is limited by the nonlinearity in the restoring force acting on the main system. This paper also describes experimental validation of the absorber under small excitation amplitude using a simple apparatus.  相似文献   

17.
The aim of the present paper is to compare two different methods available for reducing the complicated dynamics exhibited by large amplitude, geometrically nonlinear vibrations of a thin shell. The two methods are: the proper orthogonal decomposition (POD), and an asymptotic approximation of the nonlinear normal modes (NNMs) of the system. The structure used to perform comparisons is a water-filled, simply supported circular cylindrical shell subjected to harmonic excitation in the spectral neighbourhood of the fundamental natural frequency. A reference solution is obtained by discretizing the partial differential equations (PDEs) of motion with a Galerkin expansion containing 16 eigenmodes. The POD model is built by using responses computed with the Galerkin model; the NNM model is built by using the discretized equations of motion obtained with the Galerkin method, and taking into account also the transformation of damping terms. Both the POD and NNMs allow to reduce significantly the dimension of the original Galerkin model. The computed nonlinear responses are compared in order to verify the accuracy and the limits of these two methods. For vibration amplitudes equal to 1.5 times the shell thickness, the two methods give very close results to the original Galerkin model. By increasing the excitation and vibration amplitude, significant differences are observed and discussed. The response is investigated also for a fixed excitation frequency by using the excitation amplitude as bifurcation parameter for a wide range of variation. Bifurcation diagrams of Poincaré maps obtained from direct time integration and calculation of the maximum Lyapunov exponent have been used to characterize the system.  相似文献   

18.
动力吸振器作为一种振动控制单元被广泛运用于各种工程场合,但传统的线性吸振器只能实现窄带振动控制.文章在线性吸振器的基础上引入对称水平弹簧构建线性刚度与非线性刚度相结合的组合刚度非线性吸振器,以提升吸振器的吸振性能.考虑实际工程中可能的安装方式,分别建立水平弹簧接地安装和不接地安装的组合刚度非线性吸振器模型,利用谐波平衡法结合弧长延拓法解析求解动力学响应,并与数值结果相互验证,证明了求解结果的准确性.随后分析比较两种组合刚度非线性吸振器与线性吸振器以及非线性能量阱之间的吸振性能,发现水平弹簧接地安装类型的组合刚度非线性吸振器在保留线性吸振器优势的同时又改善其吸振频带窄的缺点,且与非线性能量阱相比在主共振频率附近的较宽频内吸振性能更优.在此基础上,讨论了水平弹簧参数以及吸振器阻尼对主结构振动幅频响应和稳定性的影响,最后观察分析主结构幅频响应曲线不稳定区内的复杂动力学行为.研究结果表明合适的设计参数能够使得主结构振动峰值较低的同时,频响曲线不稳定运动区域的范围也较小.  相似文献   

19.
The paper deals with the subharmonic response of a shallow cable due to time variations of the chord length of the equilibrium suspension, caused by time varying support point motions. Initially, the capability of a simple nonlinear two-degree-of-freedom model for the prediction of chaotic and stochastic subharmonic response is demonstrated upon comparison with a more involved model based on a spatial finite difference discretization of the full nonlinear partial differential equations of the cable. Since the stochastic response quantities are obtained by Monte Carlo simulation, which is extremely time-consuming for the finite difference model, most of the results are next based on the reduced model. Under harmonical varying support point motions the stable subharmonic motion consists of a harmonically varying component in the equilibrium plane and a large subharmonic out-of-plane component, producing a trajectory at the mid-point of shape as an infinity sign. However, when the harmonical variation of the chordwise elongation is replaced by a narrow-banded Gaussian excitation with the same standard deviation and a centre frequency equal to the circular frequency of the harmonic excitation, the slowly varying phase of the excitation implies that the phase difference between the in-plane and out-of-plane displacement components is not locked at a fixed value. In turn this implies that the trajectory of the displacement components is slowly rotating around the chord line. Hence, a large subharmonic response component is also present in the static equilibrium plane. Further, the time variation of the envelope process of the narrow-banded chordwise elongation process tends to enhance chaotic behaviour of the subharmonic response, which is detectable via extreme sensitivity on the initial conditions, or via the sign of a numerical calculated Lyapunov exponent. These effects have been further investigated based on periodic varying chord elongations with the same frequency and standard deviation as the harmonic excitation, for which the amplitude varies in a well-defined way between two levels within each period. Depending on the relative magnitude of the high and low amplitude phase and their relative duration the onset of chaotic vibrations has been verified.  相似文献   

20.

The dielectric elastomer (DE) is an important intelligent soft material widely used in soft actuators, and the dynamic response of the DE is highly nonlinear due to the material properties. In the DE, electrostriction denotes the deformation-dependent permittivity. In the present study, we formulate the nonlinear dynamic governing equations of the DE membrane considering the electrostriction effect. The free vibration and parametric excitation of the DE membrane with different geometric sizes are calculated. The free vibration bifurcations induced by the initial location and the voltage are both discussed according to an energy-based approach. The amplitude-frequency characteristics and bifurcation diagrams of parametric excitation are also given. The results show that electrostriction decreases the free vibration amplitude and increases the frequency, but it has less influence on the parametric excitation oscillation frequency and decreases the parametric excitation amplitude except when the membrane resonates. The initial location and the applied voltage can induce the snap-through instability of the free vibration. A large geometric size will lead to a much lower resonance frequency. The resonance amplitudes increase while the resonance frequencies decrease with the increase in the applied voltage. The critical voltage of snap-through instability for the parametric excitation is larger than that for the free vibration one.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号