首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the characteristics of fractures in naturally fractured reservoir and a discrete-fracture model, a fracture network numerical well test model is developed.Bottom hole pressure response curves and the pressure field are obtained by solving the model equations with the finite-element method. By analyzing bottom hole pressure curves and the fluid flow in the pressure field, seven flow stages can be recognized on the curves. An upscaling method is developed to compare with the dual-porosity model(DPM). The comparisons results show that the DPM overestimates the inter-porosity coefficient λ and the storage factor ω. The analysis results show that fracture conductivity plays a leading role in the fluid flow. Matrix permeability influences the beginning time of flow from the matrix to fractures. Fractures density is another important parameter controlling the flow. The fracture linear flow is hidden under the large fracture density.The pressure propagation is slower in the direction of larger fracture density.  相似文献   

2.
Matrix–fracture transfer functions are the backbone of any dual-porosity or dual-permeability formulation. The chief feature within them is the accurate definition of shape factors. To date, there is no completely accepted formulation of a matrix–fracture transfer function. Many formulations of shape factors for instantly-filled fractures with uniform pressure distribution have been presented and used; however, they differ by up to five times in magnitude. Based on a recently presented transfer function, time-dependent shape factors for water imbibing from fracture to matrix under pressure driven flow are proposed. Also new matrix–fracture transfer pressure-based shape factors for instantly-filled fractures with non-uniform pressure distribution are presented in this article. These are the boundary conditions for a case for porous media with clusters of parallel and disconnected fractures, for instance. These new pressure-based shape factors were obtained by solving the pressure diffusivity equation for a single phase using non-uniform boundary conditions. This leads to time-dependent shape factors because of the transient part of the solution for pressure. However, approximating the solution with an exponential function, one obtains constant shape factors that can be easily implemented in current dual-porosity reservoir simulators. The approximate shape factors provide good results for systems where the transient behavior of pressure is short (a case commonly encountered in fractured reservoirs).  相似文献   

3.
In this paper a rigorous dual-porosity model is formulated, which accurately represents the coupling between large-scale fractures and the micropores within dual porosity media. The overall structure of the porous medium is conceptualized as being blocks of diffusion dominated micropores separated by natural fractures (e.g. cleats for coal) through which Darcy’s flow occurs. In the developed model, diffusion in the matrix blocks is fully coupled to the pressure distribution within the fracture system. Specific assumptions on the pressure behaviour at the matrix boundary, such as step-time function employed in some earlier studies, are not invoked. The model involves introducing an analytical solution for diffusion within a matrix block, and the resultant combined flow equation is a nonlinear integro-(partial) differential equation. Analyses to the equation in this text, in addition to the theoretical development of the proposed model, include: (1) discussion on the “fading memory” of the model; (2); one-dimensional perturbation solution subject to a specific condition; and (3) asymptotic analyses of the “long-time” and “short-time” responses of the flow. Two previous models, the Warren-Root and the modified Vermeulen models, are compared with the proposed model. The advantages of the new model are demonstrated, particularly for early time prediction where the approximations of these other models can lead to significant error.  相似文献   

4.
5.
Fractures and faults are common features of many well-known reservoirs. They create traps, serve as conduits to oil and gas migration, and can behave as barriers or baffles to fluid flow. Naturally fractured reservoirs consist of fractures in igneous, metamorphic, sedimentary rocks (matrix), and formations. In most sedimentary formations both fractures and matrix contribute to flow and storage, but in igneous and metamorphic rocks only fractures contribute to flow and storage, and the matrix has almost zero permeability and porosity. In this study, we present a mesh-free semianalytical solution for pressure transient behavior in a 2D infinite reservoir containing a network of discrete and/or connected finite- and infinite-conductivity fractures. The proposed solution methodology is based on an analytical-element method and thus can be easily extended to incorporate other reservoir features such as sealing or leaky faults, domains with altered petrophysical properties (for example, fluid permeability or reservoir porosity), and complicated reservoir boundaries. It is shown that the pressure behavior of discretely fractured reservoirs is considerably different from the well-known Warren and Root dual-porosity reservoir model behavior. The pressure behavior of discretely fractured reservoirs shows many different flow regimes depending on fracture distribution, its intensity and conductivity. In some cases, they also exhibit a dual-porosity reservoir model behavior.  相似文献   

6.
Experimental and industrial observations indicate a strong nonlinear dependence of the parameters of the flow processes in a fractured reservoir on its state of stress. Two problems with change of boundary condition at the well — pressure recovery and transition from constant flow to fixed bottom pressure — are analyzed for such a reservoir. The latter problem may be formulated, for example, so as not to permit closure of the fractures in the bottom zone. For comparison, the cases of linear [1] and nonlinear [2] fractured porous media and a fractured medium [3] are considered, and solutions are obtained in a unified manner using the integral method described in [1]. Nonlinear elastic flow regimes were previously considered in [3–6], where the pressure recovery process was investigated in the linearized formulation. Problems involving a change of well operating regime were examined for a porous reservoir in [7].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 67–73, May–June, 1991.  相似文献   

7.
Problems of fluid flow through a fractured porous medium consisting of fractures and blocks with different filter characteristics are solved. The mass exchange between fractures and blocks is assumed to be proportional to the pressure difference between them. The porosity in the fractures is assumed to be negligibly small. Under these assumptions the determination of the pressure fields reduces to the integration of a system of linear differential equations. The solution is found by the operational method using the Efros theorem. The cases of oil reservoir operation by means of both galleries and wells are considered. The solutions are obtained in an analytical form convenient for calculations.Kazan'. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 94–102, January–February, 1995.  相似文献   

8.
考虑页岩气藏开发中渗流的多尺度效应,提出了一个基于裂缝-孔隙双重介质的离散裂缝模型.在该模型中,基质、天然裂缝和人工压裂裂缝采用各自控制方程独立计算,不同介质之间通过流量交换相互关联.为分析模型可靠性,分别和基于渗透率粗化及压裂裂缝导流能力无穷大的模型对比.数值算例显示,伴随着网格细分,该模型与精确渗透率粗化模型具有相同计算精度,两者收敛速度均较快,但该模型易推广到多相流动问题,而等压模型对产量将有所高估.研究了地质参数和工艺参数对气井产量的影响规律.计算结果表明天然裂缝渗透率及基质孔隙扩散系数对产气速率有着重要影响,产气速率伴随着人工压裂裂缝导流能力、长度以及数目的增加而增加,但是增加幅度会逐步趋缓.  相似文献   

9.
The models of the nonlinear radial flow for the infinite and finite reservoirs including a quadratic gradient term were presented. The exact solution was given in real space for flow equation including quadratic gradiet term for both constant-rate and constant pressure production cases in an infinite system by using generalized Weber transform.Analytical solutions for flow equation including quadratic gradient term were also obtained by using the Hankel transform for a finite circular reservoir case. Both closed and constant pressure outer boundary conditions are considered. Moreover, both constant rate and constant pressure inner boundary conditions are considered. The difference between the nonlinear pressure solution and linear pressure solution is analyzed. The difference may be reached about 8% in the long time. The effect of the quadratic gradient term in the large time well test is considered.  相似文献   

10.
Presence of fracture roughness and occurrence of nonlinear flow complicate fluid flow through rock fractures. This paper presents a qualitative and quantitative study on the effects of fracture wall surface roughness on flow behavior using direct flow simulation on artificial fractures. Previous studies have highlighted the importance of roughness on linear and nonlinear flow through rock fractures. Therefore, considering fracture roughness to propose models for the linear and nonlinear flow parameters seems to be necessary. In the current report, lattice Boltzmann method is used to numerically simulate fluid flow through different fracture realizations. Flow simulations are conducted over a wide range of pressure gradients through each fracture. It is observed that creeping flow at lower pressure gradients can be described using Darcy’s law, while transition to inertial flow occurs at higher pressure gradients. By detecting the onset of inertial flow and regression analysis on the simulation results with Forchheimer equation, inertial resistance coefficients are determined for each fracture. Fracture permeability values are also determined from Darcy flow as well. According to simulation results through different fractures, two parametric expressions are proposed for permeability and inertial resistance coefficient. The proposed models are validated using 3D numerical simulations and experimental results. The results obtained from these two proposed models are further compared with those obtained from the conventional models. The calculated average absolute relative errors and correlation coefficients indicate that the proposed models, despite their simplicity, present acceptable outcomes; the models are also more accurate compared to the available methods in the literature.  相似文献   

11.
The method of large-scale averaging is applied to derive and analyze a dual-porosity model of multiphase flow in naturally fractured reservoirs. The dual-porosity model contains the usual equations based on Darcy's law, and the coupling terms representing the fluid transfer between the matrix and the fractures. Both quasisteady and transient closure schemes are considered to obtain and analyze the fracture and matrix permeability tensors and the fluid transfer terms. The techniques developed here are not restricted to regular geometric fractures. Computational work aimed at showing the implications of the theory behind the derivation of the present dual-porosity model is also described. In particular, comparisons among the dual-porosity model, the single porosity model, and other dual-porosity models are presented through numerical experiments.  相似文献   

12.
Three models are considered for single component, single phase flow in naturally fractured porous media. The microscopic model holds on the Darcy scale, and it is considered to govern the system. The macroscopic, dual-porosity model was derived in Part I of this work from the microscopic model by two-scale mathematical homogenization. In this paper, we show that the dual-porosity model predicts well the behavior of the microscopic model by comparing their computed solutions in certain reasonable test cases. Homogenization gives a complex formula for a key parameter in the dual-porosity model; herein a simple approximation to this formula is presented. The third model considered is a single-porosity model with averaged parameters. It is shown that this type of model cannot predict the behavior of the microscopic flow.This work was supported in part by the National Science Foundation and by the State of Texas Governor's Energy Office.  相似文献   

13.
The stress-strain state of an incompressible cylindrical elastic body with antiplane strain under the action of potential forces and surface loading constant along the body is considered in a nonlinear formulation in actual variables. The stresses are expressed via the pressure and independent strains, the pressure is expressed via the force and elastic potentials, and nonlinear boundary-value problems are posed for strains (and displacements). Various methods for solving these problems are developed. For the nonlinear equations obtained, some analytical solutions containing free parameters are given, which can be used as a basis for solving particular problems. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 6, pp. 93–101, November–December, 2006.  相似文献   

14.
In the present study, an algorithm is presented for the dual-porosity model formulated in Part I of this series. The resultant flow equation with the dual-porosity formulation is of an integro-(partial) differential equation involving differential terms for the Darcy flow in large fractures and integrals in time for diffusion within matrix blocks. The algorithm developed here to solve this equation involves a step-by-step finite difference procedure combined with a quadrature scheme. The quadrature scheme, used for the integral terms, is based on the trapezoidal method which is of second-order precision. This order of accuracy is consistent with the first- and second-order finite difference approximations used here to solve the differential terms in the derived flow equation. In an approach consistent with many petroleum reservoir and groundwater numerical flow models, the example formulation presented uses a first-order implicit algorithm. A two-dimensional example is also demonstrated, with the proposed model and numerical scheme being directly incorporated into the commercial gas reservoir simulator SIMED II that is based on a fully implicit finite difference approach. The solution procedure is applied to several problems to demonstrate its performance. Results from the derived dual-porosity formulation are also compared to the classic Warren–Root model. Whilst some of this work confirmed previous findings regarding Warren–Root inaccuracies at early times, it was also found that inaccuracy can re-enter the Warren–Root results whenever there are changes in boundary conditions leading to transient variation within the domain.  相似文献   

15.
Seepage pressure waves in fractures in a porous permeable medium are studied. The effects of the reservoir and fracture porosity and permeability, the fracture width, and the rheological properties of the saturating fluid on the perturbation dynamics in the fracture are analyzed. It is shown that in porous permeable reservoirs, fractures are wave channels through which low-frequency fluctuations of borehole pressure propagate. Accurate solutions are obtained which describe the evolution of pressure fields in a fracture with an instantaneous change in the borehole pressure by a constant value. Based on these solutions, dependences of the fluid flow rate on time and interface pressure are determined.  相似文献   

16.
IntroductionSince 1 958,Levsionandseveralotherauthors[1]- [4 ]havemadeasubstantialstudyforexistenceandestimateofsolutionsforthethird_ordersingularlyperturbedboundaryvalueproblemwithtwopointboundaryconditionsx( 0 ) =A ,x′( 0 ) =B ,x′( 1 ) =C ,orslightlyextensivelylinearbo…  相似文献   

17.
Analytical expressions for the heat flux divided by its value at the stagnation point which depend on the geometric parameters invariant with respect to the choice of the coordinate system, as well as expressions depending on the geometry and the pressure on the surface which have a wider applicability range are obtained in the problem of three-dimensional hypersonic flow over blunt bodies at large and moderate Reynolds numbers. These formulas are derived by solving the thin viscous shock layer equations for a perfect gas using the integral method of successive approximations developed by the author. The accuracy and the range of applicability of the analytical solutions are estimated by comparing them with numerical solutions. On the basis of comparisons with numerical solutions for multicomponent chemically nonequilibrium air at altitudes from 90 to 50 km of the spacecraft reentry trajectory in the Earth’s atmosphere it is shown that the formulas obtained can be used for calculations of the heat flux on an ideal catalytic surface of bodies in hypersonic chemically reacting gas flow.  相似文献   

18.
在无源汇条件下,根据流过某一个横截面的流体流量等于流过这一横截面内所有精细网格的流体流量之和这一特点提出了粗化网格等效渗透率的计算方法。在粗化区内,利用直接解法求解二维渗流方程,再用这些解合成粗化网格的三维合成解,并由合成解计算粗化网格的等效渗透率。根据精度的要求采用了不均匀网格粗化,在流体流速大的区域采用精细网格。利用所得等效渗透率计算了粗化网格的某三维非均匀不稳定渗流场的压降解,结果表明三维非均匀不稳定渗流方程的二维不均匀粗化解非常逼近采用精细网格的解,但计算的速度比采用精细网格提高了80倍。  相似文献   

19.
Two one-parameter series of real solutions describing the process of deceleration and acceleration of a viscoplastic medium under the action of a time-varying pressure gradient are obtained. The problem of axisymmetric unsteady viscoplastic flow is reduced to the solution of the Stefan boundary-value problem for the heat conduction equation with a nonlinear condition on the boundary of the quasi-rigid core. By a self-similar change of variables the problem can be reduced to a second-order ordinary differential equation. The solutions of this equation are represented in terms of Bessel and elementary functions. As a result, two one-parameter series of solutions, the first of which describes the acceleration and the second the deceleration of a viscoplastic medium in a pipe under the action of a time-varying pressure gradient are obtained.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号