首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Autoparametric interaction of a liquid free surface in a rectangular tank with an elastic support structure, which is subjected to vertical excitation, is investigated. When the natural frequency of the structure is equal to the lowest natural frequency of liquid sloshing, this system is categorized as an autoparametric system with an internal resonance ratio 1:1. The structure is elastically supported so there is a higher possibility that the 1:1 internal resonance can be observed. The nonlinear theoretical analysis is conducted for a fluid assumed to be perfect in a tank with a finite liquid depth. The equations of motion for the first three sloshing modes are derived employing Galerkin’s technique and considering both the nonlinearity of the fluid motion, and the viscous damping effect. Then the theoretical frequency response curves for the harmonic oscillations of the structure and sloshing are determined using van der Pol’s method. The frequency response curves show that high amplitudes of the structure’s vibrations facilitate the liquid sloshing. Furthermore, the influence of the internal detuning parameter is investigated by showing the frequency response curves and bifurcation sets. Hopf bifurcations may occur followed by amplitude-modulated motions. The theoretical results are in quantitative agreement with the experimental data.  相似文献   

2.
hing dynamics in a square tank are numerically investigated when the tank is subjected to horizontal, narrowband random ground excitation. The natural frequencies of the two predominant sloshing modes are identical and therefore 1:1 internal resonance may occur. Galerkin’s method is applied to derive the modal equations of motion for nonlinear sloshing including higher modes. The Monte Carlo simulation is used to calculate response statistics such as mean square values and probability density functions (PDFs). The two predominant modes exhibit complex phenomena including “autoparametric interaction” because they are nonlinearly coupled with each other. The mean square responses of these two modes and the liquid elevation are found to differ significantly from those of the corresponding linear model, depending on the characteristics of the random ground excitation such as bandwidth, center frequency and excitation direction. It is found that the direction of the excitation is a significant factor in predicting the mean square responses. The frequency response curves for the same system subjected to equivalent harmonic excitation are also calculated and compared with the mean square responses to further explain the phenomena. Changing the liquid level causes the peak of the mean square response to shift. Furthermore, the risk of the liquid overspill from the tank is discussed by showing the three-dimensional distribution charts of the mean square responses of liquid elevations.  相似文献   

3.
This paper deals with the non-linear vibrations of an elastic two-story structure with two liquid tanks installed under horizontal harmonic excitation. The influence of the configuration of the two rectangular tanks on the response of the structure is investigated. In the theoretical analysis, Galerkin's method is applied to derive the equations of motion for the structure and the modal equations for sloshing, while considering the non-linear liquid forces. Then, van der Pol's method is used to determine the frequency response curves. Three cases are investigated: In the first case two tanks are installed, one on the top and one on the second story of the structure, in the second case one tank is installed on top, and in the third case two tanks are installed on top. The theoretical results of the first case are compared with those of the second and third cases. In the numerical calculations, it is found that Hopf bifurcations occur near the tuning frequency and then amplitude modulated motion appears in both the first and third cases. It is thus concluded that multiple tanks yield less effectiveness in suppressing the vibrations of the structure. The experimental data confirm the validity of the theoretical results for the first and third cases.  相似文献   

4.
We construct a system of approximate nonlinear equations describing the small oscillations of an ideal incompressible liquid which partiallyfills a spherical cavity. These equations are obtained for the case when the cavity undergoes small harmonic translational displacements with a frequency close to the fundamental frequency of the liquid oscillations in the direction perpendicular to the gradient of the mass force field acting on the liquid.  相似文献   

5.
李晓玉  岳宝增 《力学学报》2019,51(5):1448-1454
以充液航天器为工程背景,借助多尺度方法研究刚--液耦合动力学系统非线性动力学特性.利用多维模态方法,将描述横向外激励下圆柱贮箱中液体非线性晃动的自由边界问题转换为液体模态系数相互耦合的有限维非线性常微分方程组.推导液体晃动产生的作用于贮箱壁的晃动力和晃动力矩的解析表达式,进而建立航天器刚体部分平动和液体晃动耦合的非线性动力学方程组.应用多尺度方法对刚--液耦合系统的动力学特性进行解析分析,通过固有频率的特征方程求解耦合系统固有频率,推导外激励频率接近耦合系统第一阶固有频率时液体晃动稳态解的幅值频率响应方程.结合数值方法,研究了液体晃动稳态解的幅值频率响应曲线和激励--幅值响应曲线.结果表明, 随充液比变化,液体晃动稳态解的幅值频率响应曲线会发生软、硬弹簧特性转换现象和"跳跃"现象;幅值频率响应曲线的软、硬弹簧特性转换点受重力加速度和弹簧刚度系数影响;以上所得研究结果表明,考虑非线性效应时的刚--液耦合系统动力学特性与传统的线性系统模型所显示的动力学特性具有本质区别.本文的研究工作对进一步分析充液航天器刚--液耦合非线性动力学特性具有重要参考价值.   相似文献   

6.
俯仰运动圆柱贮箱中液体的非线性晃动   总被引:9,自引:3,他引:6  
首次对储仰运动圆柱贮箱中液体的有限幅值晃动问题进行了解析研究。首先建立了描述俯仰和/或偏航运动贮箱中液体晃动的非线性偏微分方程组,而后提出了相应的变分原理,建立了压力体积分形式的Lagrange函数,通过变分方程,最终得到措述俯仰和/或偏航运动圆柱贮箱中液体晃动的非线性动力学微分方程组,该动力学方程组自然满足液体自由表面的运动学和动力学办界条件。而后动用多尺度法求解了所得的动力学方程组,对非线性液  相似文献   

7.
This paper investigates the nonlinear flexural dynamic behavior of a clamped Timoshenko beam made of functionally graded materials (FGMs) with an open edge crack under an axial parametric excitation which is a combination of a static compressive force and a harmonic excitation force. Theoretical formulations are based on Timoshenko shear deformable beam theory, von Karman type geometric nonlinearity, and rotational spring model. Hamilton’s principle is used to derive the nonlinear partial differential equations which are transformed into nonlinear ordinary differential equation by using the Least Squares method and Galerkin technique. The nonlinear natural frequencies, steady state response, and excitation frequency-amplitude response curves are obtained by employing the Runge–Kutta method and multiple scale method, respectively. A parametric study is conducted to study the effects of material property distribution, crack depth, crack location, excitation frequency, and slenderness ratio on the nonlinear dynamic characteristics of parametrically excited, cracked FGM Timoshenko beams.  相似文献   

8.
In this paper, the nonlinear vibration of a single-walled carbon nanotube conveying fluid is investigated utilizing a multidimensional Lindstedt–Poincaré method. Considering the geometric large deformation of the single-walled carbon nanotube and external harmonic excitation force, based on nonlocal elastic theory and Euler–Bernoulli beam theory, the nonlinear vibration equation of a fluid-conveying single-walled carbon nanotube is established. Analyzing the equation through the multidimensional Lindstedt–Poincaré method, and from the solvability condition of the nonlinear vibration equation, the cubic algebraic equation which indicates the amplitude–frequency relation is obtained. Based on the root discriminant of the cubic equation, the first order primary response of the pinned–pinned carbon nanotube is discussed. The relations among internal resonance, the amplitude and frequency of the external excitation force are analyzed in detail. When the external excite force frequency is around the first mode natural frequency, the first mode primary resonance occurs. If simultaneously the first two modes natural frequency ratio is around 3, internal resonance occurs and the internal resonance region depends on the amplitude of external excitation force.  相似文献   

9.
Nonlinear dynamics of flow-induced oscillations of cylinders is investigated. The approach in our paper is made to introduce an harmonic forced vibration in the coupling term of the structural equation since this may be the consequence of approximating the potential force that could act as a periodic excitation. The method of multiple scales is used to determine the steady state responses. Amplitude and phase modulation equations as well as external force-response and frequency-response curves are obtained. We show that harmonic excitation can induce resonance phenomena in the oscillation of the structure for a range of frequencies of potential force, and also lock-in phenomena appear in the structure part. Also, we find that the structure can be damaged as the amplitude of the potential excitation increases. Numerical simulations confirm the existence of chaotic vibration in the system, a small damping signal control is used to suppress it since it may cause fatigue in the system. The model developed is expected to yield better results for structure in water.  相似文献   

10.
The primary Bjerknes force experienced by a population of multiple bubbles in a liquid set in a nonlinear ultrasonic standing field and their translation are calculated and analyzed by numerical simulations. The force field is evaluated by considering the nonlinear bubble oscillations as well as the nonlinear character of the ultrasonic pressure field (both variables are unknown in the coupled nonlinear differential system). The results at small amplitudes agree with the classical theory on bubble translation, depending on the driving frequency in relation to the bubble resonance. It is shown that, when amplitudes are raised, the force field exhibits important modifications that strongly affect the motion of the bubbles and the way they form agglomerates. An analysis is performed on the importance of the terms in the differential system that provoke (a) the nonlinearity of the bubble oscillations and (b) the nonlinearity of the acoustic wave. This study reveals that both features should be considered to better approximate the primary Bjerknes force field. Simulations of the nonlinear ultrasonic field after the bubbles form agglomerates under the influence of this force are also performed.  相似文献   

11.
Sjöberg  Mattias  Kari  Leif 《Nonlinear dynamics》2003,33(3):323-336
In presenting a nonlinear dynamic model of a rubber vibrationisolator, the quasistatic and dynamic motion influences on theforce response are investigated within the time and frequencydomain. It is found that the dynamic stiffness at the frequency ofa harmonic displacement excitation, superimposed upon the longterm isolator response, is strongly dependent on staticprecompression, dynamic amplitude and frequency. The problems ofsimultaneously modelling the elastic, viscoelastic and frictionforces are removed by additively splitting them, modelling theelastic force response by a nonlinear, shape factor basedapproach, displaying results that agree with those of aneo-Hookean hyperelastic isolator at a long term precompression.The viscoelastic force is modeled by a fractional derivativeelement, while the friction force governs from a generalizedfriction element displaying a smoothed Coulomb force. A harmonicdisplacement excitation is shown to result in a force responsecontaining the excitation frequency and its every otherhigher-order harmonic, while using a linearized elastic forceresponse model, whereas all higher-order harmonics are present forthe fully nonlinear case. It is furthermore found that the dynamicstiffness magnitude increases with static precompression andfrequency, while decreasing with dynamic excitationamplitude – eventually increasing at the highest amplitudes due tononlinear elastic effects – with its loss angle displaying amaximum at an intermediate amplitude. Finally, the dynamicstiffness at a static precompression, using a linearized elasticforce response model, is shown to agree with the fully nonlinearmodel except at the highest dynamic amplitudes.  相似文献   

12.
Super-harmonic resonances may appear in the forced response of a weakly nonlinear oscillator having cubic nonlinearity, when the forcing frequency is approximately equal to one-third of the linearized natural frequency. Under super-harmonic resonance conditions, the frequency-response curve of the amplitude of the free-oscillation terms may exhibit saddle-node bifurcations, jump and hysteresis phenomena. A linear vibration absorber is used to suppress the super-harmonic resonance response of a cubically nonlinear oscillator with external excitation. The absorber can be considered as a small mass-spring-damper oscillator and thus does not adversely affect the dynamic performance of the nonlinear primary oscillator. It is shown that such a vibration absorber is effective in suppressing the super-harmonic resonance response and eliminating saddle-node bifurcations and jump phenomena of the nonlinear oscillator. Numerical examples are given to illustrate the effectiveness of the absorber in attenuating the super-harmonic resonance response.  相似文献   

13.
Tuned liquid dampers (TLDs) utilize sloshing fluid to absorb and dissipate structural vibrational energy. TLDs of irregular or complex tank geometry may be required in practice to avoid tank interference with fixed structural or mechanical components. The literature offers few analytical models to predict the response of this type of TLD, particularly when the fluid depth is small. In this paper, a multimodal model is developed utilizing a Boussinesq-type modal theory which is valid for small TLD fluid depths. The Bateman–Luke variational principle is employed to develop a system of coupled nonlinear ordinary differential equations which describe the fluid response when the tank is subjected to base excitation. Energy dissipation is incorporated into the model from the inclusion of damping screens. The fluid model is used to describe the response of a 2D structure–TLD system when the structure is subjected to external loading and the TLD tank geometry is irregular.Shake table experiments are conducted on a rectangular and chamfered tank subjected to unidirectional base excitation. Comparisons of the experimental and predicted sloshing forces and energy dissipation per cycle indicate that the model is able to predict the fluid response at fluid depth ratios greater than h/L=0.10. Next, structure–TLD system tests are conducted and it is found that the model can predict the structural and TLD responses. The simulated and experimental results show that the TLD tank transfers energy between orthogonal structural sway modes.  相似文献   

14.
Experimental studies are conducted on the liquid sloshing characteristics in a spherical tank covered with a flexible diaphragm. A spherical acrylic tank with 145.2 mm radius is used as a test tank, and is filled with water. Silicon diaphragms, plane or hemispherical type, with 0.2 mm thickness are used as test diaphragms. The test tank is harmonically excited in the vertical direction by an electro-dynamic exciter. During the test, vibrations due to parametric instability occur when the excitation frequency is twice the natural frequency. Parametric instability regions for some natural modes are measured and are presented in the excitation frequency–excitation acceleration diagram for three cases: liquid surface is uncovered (i.e., free surface), covered with a plane diaphragm, and covered with a hemispherical diaphragm, with the volume of filling water being changed appropriately.  相似文献   

15.
A simple, yet accurate modified multi-scale method (MMSM) for an approximately analytical solution in nonlinear oscillators with two time scales under forced harmonic excitation is proposed. This method depends on the classical multi-scale method (MSM) and the method of variation of parameters. Assuming that the forced excitation is a constant, one could easily obtain the approximate analytical solution of the simplified system based on the traditional MSM. Then, this solution for the oscillator under forced harmonic excitation could be established after replacing the harmonic excitation by the constant excitation. To certify the correctness and precision of the proposed analytical method, the van der Pol system with two scales subject to slowly periodic excitation is investigated; this system presents rich dynamical phenomena such as spiking (SP), spiking-quiescence (SP-QS), and quiescence (QS) responses. The approximate analytical expressions of the three types of responses are given by the MMSM, and it can be found that the precision of the new analytical method is higher than that of the classical MSM and better than that of the harmonic balance method (HBM). The results obtained by the present method are considerably better than those obtained by traditional methods, quantitatively and qualitatively, particularly when the excitation frequency is far less than the natural frequency of the system.  相似文献   

16.
The behavior of a light free cylindrical body in a rapidly rotating horizontal cylinder containing a liquid under vibrational action (the vibration direction is perpendicular to the rotation axis) is investigated. An intense rotation of the body relative to the cavity is detected. Depending on the vibration frequency, the body rotation velocity in the laboratory reference system may be higher or lower than the cavity rotation velocity and in the resonance region they may differ by several times. The mechanism of motion generation is theoretically described. It is shown that the motion is related with the excitation of inertial oscillations of the body: the cause of the motion is an average vibrational force generated due to nonlinear effects in the Stokes boundary layer near the oscillating body. The formation of large-scale axisymmetric vortex structures periodic along the rotation axis, which appear under conditions of inertial oscillation of the body during its motion, both leading and lagging, is detected.  相似文献   

17.

In this paper, a nonlinear reduced-order model based on neural networks is introduced in order to model vertical sloshing in presence of Rayleigh–Taylor instability of the free surface for use in fluid–structure interaction simulations. A box partially filled with water, representative of a wing tank, is first set on vertical harmonic motion via a controlled electrodynamic shaker. Accelerometers and load cells at the interface between the tank and an electrodynamic shaker are employed to train a neural network-based reduced-order model for vertical sloshing. The model is then investigated for its capacity to consistently simulate the amount of dissipation associated with vertical sloshing under different fluid dynamics regimes. The identified tank is then experimentally attached at the free end of a cantilever beam to test the effectiveness of the neural network in predicting the sloshing forces when coupled with the overall structure. The experimental free response and random seismic excitation responses are then compared with that obtained by simulating an equivalent virtual model in which the identified nonlinear reduced-order model is integrated to account for the effects of violent vertical sloshing.

  相似文献   

18.
The primary resonances of a quadratic nonlinear system under weak and strong external excitations are investigated with the emphasis on the comparison of different analytical approximate approaches. The forced vibration of snap-through mechanism is treated as a quadratic nonlinear oscillator. The Lindstedt-Poincaré method, the multiple-scale method, the averaging method, and the harmonic balance method are used to determine the amplitude-frequency response relationships of the steady-state responses. It is demonstrated that the zeroth-order harmonic components should be accounted in the application of the harmonic balance method. The analytical approximations are compared with the numerical integrations in terms of the frequency response curves and the phase portraits. Supported by the numerical results, the harmonic balance method predicts that the quadratic nonlinearity bends the frequency response curves to the left. If the excitation amplitude is a second-order small quantity of the bookkeeping parameter, the steady-state responses predicted by the second-order approximation of the LindstedtPoincaré method and the multiple-scale method agree qualitatively with the numerical results. It is demonstrated that the quadratic nonlinear system implies softening type nonlinearity for any quadratic nonlinear coefficients.  相似文献   

19.
The present paper reports some interesting phenomena observed in the nonlinear dynamics of two self-excitedly coupled harmonic oscillators. The system under consideration consists of two mechanical oscillators coupled by the Rayleigh type self-exciting force. Both autonomous and nonautonomous cases for weakly coupled systems are analyzed. When the natural frequencies of the two oscillators are close to each other, only one mode of oscillation exists. As two modes of oscillations get locked to a single mode, the system is said to be in a mode-locked condition. Under a mode-locked condition, the oscillators can oscillate with only a single frequency. However, when two oscillators are sufficiently detuned, the mode-locking condition does not persist and two distinct modes of oscillations emerge. Under these circumstances, particularly when detuning is large, one of the oscillators, depending on the initial conditions, oscillates with much larger amplitude as compared to the other oscillator, and hence mode localization is observed. When one of the oscillators is subject to a harmonic excitation, at two different frequencies, termed here as the decoupling frequencies, the coupling between the oscillators is almost lost, resulting in almost zero response of the unexcited oscillator. Analytical and numerical results are presented to analyze the above mentioned phenomena. Some potential applications of the aforesaid phenomena are also discussed.  相似文献   

20.
We consider nonlinear oscillations of an ideal incompressible liquid in a partially filled vertical semicircular cylindrical tank. We construct approximate periodic solutions for a four-mode system that describes nonlinear oscillations in a semicircular cylindrical tank under the action of a perturbation force in the plane of the barrier. We construct and investigate the domains of stability and instability for the physical processes considered. We perform a numerical realization of the method and analyze the hydrodynamic interaction of the liquid with the tank. The problem considered is of interest for the investigation of nonlinear processes in a liquid in the case of tanks with diametrical barriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号