首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 453 毫秒
1.
???????PID??????????????????о?   总被引:2,自引:0,他引:2  
在仿真研究1/4车体二自由度液压半主动悬架的基础上,设计了一种 用于1/2车体的液压半主动悬架的参数自整定模糊PID控制器,并利用模糊控制规则对 PID参数进行在线修改. 以正弦信号路面、脉冲信号路面和C级路面3种典型路面作为输入 信号,应用MATLAB/Simulink控制系统仿真软件对该半主动悬架模型进行的计算机仿真表明, 具有模糊PID控制器的半主动悬架在提高车辆乘坐的舒适性方面要明显优于一般的模糊控制 悬架,具有更好的自适应能力.  相似文献   

2.
分布式驱动电动汽车,由于簧下质量增大,导致车轮振动加剧,进而影响车辆平顺性及行驶安全性。为有效抑制分布式驱动电动汽车垂向振动恶化,设计了一种主动悬架T–S模糊控制器,构建了分布式驱动电动汽车1/4悬架动力学模型,基于Matlab/Simulink在B级随机路面及变路面工况下进行动力学仿真,考虑了控制器在车辆参数不确定时的自适应性,探究了T–S模糊控制器在车辆变参数条件下的控制效果,并与PID控制的主动悬架及传统的被动悬架进行比较,通过硬件在环实验验证了控制效果。结果表明,所提出的分布式驱动电动汽车主动悬架T–S模糊控制策略可有效提升车辆的平顺性指标,相对于PID控制及被动悬架,T–S模糊控制也具有更好的多工况自适应能力。  相似文献   

3.
可调磁流变阻尼在汽车悬架的半主动控制中的应用   总被引:2,自引:0,他引:2  
本文研究了采秀磁流变阻尼的汽车半主动控制悬架在确定性激励和随机激励下的运行效果,分析了可调磁流变阻尼半主动控制的控制规律及响应情况,并与采用传统阻尼的汽车被动悬架和主动悬架进行了对比,证实了磁流变阻尼应用于汽车半主动控制的可行性及优越性。  相似文献   

4.
磁流变液阻尼器的分数阶Bingham模型结构形式简单, 而且可以更好地描述系统的滞回特性. 建立了含有分数阶Bingham模型的单自由度1/4车辆悬架系统模型, 利用磁流变液阻尼器对在路面简谐激励下的非线性车辆悬架系统进行振动控制. 研究了含有分数阶Bingham模型的悬架系统在天棚阻尼半主动控制下的主共振响应, 利用平均法得到了系统的近似解析解. 求解了系统定常解的幅频响应方程, 并根据李雅普诺夫稳定性理论得到了悬架系统的稳定性条件. 通过绘制数值解和解析解的幅频响应曲线对比图, 验证了近似解析解的正确性. 利用簧载质量垂直方向的加速度均方根值分析了半主动控制对车辆乘坐舒适性的影响, 发现天棚阻尼半主动控制策略在低频激励区域反而会降低车辆的乘坐舒适性. 因此提出了一种被动控制与半主动控制相结合的组合控制策略, 并分析了半主动控制参数对振动控制效果的影响. 分析结果表明, 该组合控制策略不但能够提高车辆的乘坐舒适性, 而且能有效抑制悬架系统的主共振振动幅值.   相似文献   

5.
对一类采用有限相对位移控制的含时滞单自由度半主动悬架系统进行了动力学分析.首先通过平均法得到了该系统的一阶近似解, 然后基于Lyapunov理论建立了系统的稳定性条件, 结果表明近似解的稳态幅值和稳定性条件都是时滞量的周期函数, 并且和外激励具有相同周期.通过对数值解和解析解的幅频曲线进行比较, 验证了一阶近似解析解的准确性, 并且解释了半主动控制中的高频颤振现象.研究了被动悬架系统并且和半主动悬架系统进行了比较, 证实了半主动悬架系统的优越性.最后, 探讨了一些关键的系统参数, 如控制间隙、时滞量、最小阻尼比等对半主动悬架系统稳态幅值的影响.  相似文献   

6.
结构振动的滑模变结构半主动控制   总被引:1,自引:0,他引:1  
研究应用磁流变阻尼器(MRD)对结构振动半主动控制的算法和原理。研制并对磁流变阻尼器进行了阻尼特性实验,采用非线性滞回双粘性模型描述磁流变阻尼器的阻尼特性,模型结果与实验结果非常一致。采用滑模控制算法和趋近律方法设计了半主动控制器。利用滑模控制方法所建立的控制器,本文给出了地震激励下结构振动半主动控制算例。计算分析表明,半主动滑模控制具有控制效果明显、鲁棒性好等优点,是一种非常有发展前途的控制方法。  相似文献   

7.
一种自适应模糊PID复合控制在液压仿真转台中的应用   总被引:2,自引:1,他引:2  
针对液压仿真转台伺服系统的非线性特点,提出了一种模糊控制与局部积分控制相结合的复合控制方式。当系统的偏差较大时主要采用模糊控制器对系统的偏差进行快速调节以加快系统的响应过程;当系统的偏差小于某一值时,加入积分控制以保证系统的精度。为了提高模糊控制器的性能,采用了规则可调整的模糊控制器。实验结果表明:该方法能有效地克服液压伺服系统的非线性和参数的不稳定性以及外部干扰对系统的影响,具有较高的控制精度和鲁棒性能,完全适合于液压仿真转台伺服系统的控制。  相似文献   

8.
时滞对结构振动半主动控制效果的影响   总被引:5,自引:0,他引:5  
应用磁流变阻尼器对结构振动进行控制,采用最优控制原理设计了控制器,给出在地震激励下结构半主动控制的仿真计算。研究了时滞对结构振动半主动控制效果的影响。数值结果表明:本文设计的半主动控制策略可有效地减小结构的振动响应,时滞对磁流变半主动控制效果随着时滞的增大而变差,但时滞不会导致该反馈控制系统的失稳。  相似文献   

9.
车辆半主动悬架非线性反馈控制   总被引:1,自引:0,他引:1  
本文给出了一种非一性反馈半主动悬架控制规律,数值分析结果表明,此控制规律良好的减拓效果。  相似文献   

10.
针对主动悬架存在传输时滞和参数不确定性的控制问题,设计了含时滞的参数不确定鲁棒控制器。首先,运用线性分式变换方法推导出含时滞的参数不确定主动悬架状态空间方程,采用零阶保持器取值处理和双线性变换,建立主动悬架离散控制系统模型。其次,以车身垂向加速度为车辆悬架系统的最优化输出目标,采用Lyapunov泛函方法,推导出系统渐进稳定的鲁棒控制器充分条件,得到满足最优H性能指标约束的反馈控制律,再通过求解线性矩阵不等式获得控制器参数。最后,进行数值算例仿真,结果表明,相较于只考虑时滞的控制器,含时滞的参数不确定鲁棒控制器具有更好的控制效果和鲁棒性,且受采样周期与不确定参数的耦合影响较小。  相似文献   

11.
Time delay in a semi-active damper: modelling the bypass valve   总被引:1,自引:0,他引:1  
Ride comfort and handling of off-road vehicles can be significantly improved by replacing the normal passive dampers in the vehicle suspension system with controllable, two-state, semi-active dampers. The hydraulic valve, which enables the semi-active damper characteristics to be controlled, is a critical component of a semi-active damper and has a marked influence on suspension performance. Models of the dynamics of a hydraulic bypass valve used on semi-active suspension systems for heavy vehicles were investigated. It is envisaged that similar models will eventually be incorporated into a full vehicle, three-dimensional simulation study. Valve response time (or time delay) is used as a measure of model accuracy because it is an important parameter in the performance of a semi-active damper. Models were created with AMESim, a commercial fluid power simulation environment, and MATLAB. AMESim was found to be capable of dealing with detailed and complex fluid power models. Attempts to solve models of similar complexity in the MATLAB environment were unsuccessful due to numerical stiffness. Experimental work was conducted to obtain dynamic performance data with which to validate model integrity. Several external factors influenced the valve behaviour during experiments. Test bench dynamics significantly influences results and obscures the absolute accuracy of the models and the experimental data. The investigation demonstrated an approach to creating fluid power models for this application that can be used in simulation, but also indicated that substantial effort is required in the process. The accuracy of the current model is not sufficient for design purposes.  相似文献   

12.
This paper presents the comparison results of a study to identify an appropriate semi-active control algorithm for a MR suspension system from a variety of semi-active control algorithms for use with MR dampers. Five representative control algorithms are considered including the skyhook controller, the hybrid controller, the LQG controller, the sliding mode controller and the fuzzy logic controller. To compare the control performances of the five control algorithms, a quarter car model with a MR damper is adopted as the baseline model for our analysis. After deriving the governing motion equations of the proposed dynamic model, five controllers are developed. Then each control policy is applied to the baseline model equipped with a MR damper. The performances of each control algorithm under various road conditions are compared along with the equivalent passive model in both time and frequency domains through the numerical simulation. Subsequently, a road test is performed to validate the actual control performance. The results show that the performance of a MR suspension system is highly dependent on the choice of algorithm employed, and the sliding mode control strategy exhibits an excellent integrated performance.  相似文献   

13.
Advances have been made to agricultural tractors to improve their ride comfort. However, the ride comfort of tractors is relatively low compared to that of passenger vehicles. Many researchers have developed various types of suspension for tractors. While most studies have focused on the geometry of the suspension, few studies have been carried out on the development of a control algorithm for tractor suspension.In this paper, to improve the ride comfort of an agricultural tractor, a hydro-pneumatic suspension model with a semi-active suspension control is developed with computer simulation, and the effectiveness of the suspension is evaluated before the vehicle is equipped with the suspension and placed into production.An optimal control algorithm for the semi-active suspension of the tractor is developed using a linear quadratic Gaussian. In the simulation, a hydro-pneumatic suspension system model is developed using SimulationX and is applied to a full vehicle model using MATLAB/Simulink. The suspension is assessed by experiments and simulations. The ride comfort using the ride comfort index according to ISO 2631 is evaluated by comparing a vehicle with a passive cab suspension to that with a hydro-pneumatic suspension applied with the semi-active control.  相似文献   

14.
In this paper, we mount semi-active suspensions between the wheels and platform of a robotic vehicle to absorb the vibrations caused by movement over rough terrain. The semi-active suspension consists of a spring and a magneto-rheological damper. By combining the dynamic model of the suspended robotic vehicle and the control model of the damper, we propose a new methodology to evaluate the dynamic stability of the vehicle. The model considers the configuration of semi-active suspensions and the road-holding ability of robotic vehicles. Based on the stability criterion, we use the particle swarm optimization method to search the optimum semi-active damping characteristics. The control model of the semi-active damper is checked by sinusoidal response analysis. To verify the dynamic stability criterion and the control method, we evaluate the proposed methodology by simulating a rough pavement condition and comparing the effectiveness of the method to a passive suspension. The results show that the proposed stability criterion is feasible, and the optimal control method yields a substantially improved dynamic stability when the vehicle moves through rough terrain.  相似文献   

15.
Semi-active hydro-gas suspension system for a tracked vehicle   总被引:1,自引:0,他引:1  
A semi-active hydro-gas suspension is proposed for a tracked vehicle to improve ride comfort performance, without compromising the road holding and load carrying capabilities of the passive suspension. This is achieved through an active damper used in parallel with a gas spring. The suspension damper parameters are varied by a control mechanism based on sky-hook damping theory, which alters the flow characteristics. A damper prototype has been developed, tested for its flow characteristics, after which it has been integrated into an existing hydro-gas suspension system. An analytical model has been proposed from first principles rather than developing a phenomenological model based on experimental characteristics. This model is validated with experiments carried out on a suspension test rig. In order to compare the performance with the original passive system, an in-plane vehicle model is developed and the simulations clearly show that the semi-active system performance is superior to the passive system.  相似文献   

16.
This paper is concerned with the development of a semi-active hydropneumatic spring and damper system, comprising of a two state hydropneumatic spring and a two state hydraulic damper. The system was specifically developed to improve the ride comfort and handling of large off-road vehicles. The suspension requirements for good ride comfort and handling for heavy off-road vehicles are discussed with special reference to the advantages of semi-active hydropneumatic springs and semi-active dampers. The layout and functioning of an experimental spring and damper unit used for laboratory tests are discussed. Spring and damper characteristics, as well as valve response times for both the semi-active spring and semi-active damper were determined. A single degree of freedom test rig with a sprung mass of 3 tons was used to perform first order ride comfort tests. Tests include step response and random input response. The test rig was also used to evaluate semi-active control strategies for both spring and damper as well as a control strategy for implementing ride height adjustment without using an external hydraulic pump.  相似文献   

17.
The primary purpose of this paper is to analyze the effects of vibrations on the comfort and road holding capability of road vehicles as observed in the variation of different parameters such as suspension coefficients, road disturbances, and the seat position. This study required the development of a mathematical model to simulate the dynamic behavior of a 3-D vehicle. With this model, various types of non-linear suspensions such as active and semi-active suspensions may be investigated. The results obtained from the simulation of the 3-D vehicle demonstrate that the use of active and semi-active suspension models on road vehicles prove to be beneficial for comfort without unduly compromising road holding capability.  相似文献   

18.
Modeling and control of vehicle suspension system are high noteworthy from safety to comfort. In this paper, an analytical nonlinear half-vehicle model which is included quadratic tire stiffness, cubic suspension stiffness, and coulomb friction is derived based on fundamental physics. A hybrid fuzzy logic approach which combines fuzzy logic and PID controllers is designed for reducing the vibration levels of passenger seat and vehicle body. Performances of designed controllers have been evaluated by numerical simulations. Comparisons with classical PID control, Fuzzy Logic Control (FLC) and Hybrid Fuzzy-PID control (HFPID) have also been provided. Results of numerical simulations are evaluated in terms of time histories of displacement and acceleration responses and ride index comparison. A good performance for the Hybrid Fuzzy-PID controller with coupled rules (HFPIDCR) is achieved in simulation studies despite the nonlinearities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号