首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An initial-boundary value problem for shallow equation system consisting of water dynamics equations, silt transport equation, the equation of bottom topography change, and of some boundary and initial conditions is studied, the existence of its generalized solution and semidiscrete mixed finite element (MFE) solution was discussed, and the error estimates of the semidiscrete MFE solution was derived. The error estimates are optimal.  相似文献   

2.
The vapor deposition chemical reaction processes, which are of extremely extensive applications, can be classified as a mathematical model by the following governing nonlinear partial differential equations containing velocity vector, temperature field, pressure field, and gas mass field. The mixed finite element (MFE) method is employed to study the system of equations for the vapor deposition chemical reaction processes. The semidiscrete and fully discrete MFE formulations are derived. And the existence and convergence (error estimate) of the semidiscrete and fully discrete MFE solutions are demonstrated. By employing MFE method to treat the system of equations for the vapor deposition chemical reaction processes, the numerical solutions of the velocity vector, the temperature field, the pressure field, and the gas mass field can be found out simultaneously. Thus, these researches are not only of important theoretical means, but also of extremely extensive applied vistas.  相似文献   

3.
A strategy is proposed based on the stochastic averaging method for quasi nonintegrable Hamiltonian systems and the stochastic dynamical programming principle. The proposed strategy can be used to design nonlinear stochastic optimal control to minimize the response of quasi non-integrable Hamiltonian systems subject to Gaussian white noise excitation. By using the stochastic averaging method for quasi non-integrable Hamiltonian systems the equations of motion of a controlled quasi non-integrable Hamiltonian system is reduced to a one-dimensional averaged Ito stochastic differential equation. By using the stochastic dynamical programming principle the dynamical programming equation for minimizing the response of the system is formulated.The optimal control law is derived from the dynamical programming equation and the bounded control constraints. The response of optimally controlled systems is predicted through solving the FPK equation associated with It5 stochastic differential equation. An example is worked out in detail to illustrate the application of the control strategy proposed.  相似文献   

4.
The geometrk, properties of the solution set of Lyapunov equation of linear time invariant discrete system are discussed. Furthermore, the stabitility of piecewise linear discrete systems is studied and some sufficient conditions are obtained for the asymptotical stability of piecewise linear discrete systems in which each sub-system is stable. The results are applied to second order piecewise linear systems.  相似文献   

5.
In this paper we consider the initial-boundary value problem for a second orderhyperbolic equation with initial jump.The bounds on the derivatives of the exact solutionare given.Then a difference scheme is constructed on a non-uniform grid.Finally,uniformconvergence of the difference solution is proved in the sense of the discrete energy norm.  相似文献   

6.
The numerical solution for a type of quasilinear wave equation is studied. The three-level difference scheme for quasi-linear waver equation with strong dissipative term is constructed and the convergence is proved. The error of the difference solution is estimated. The theoretical results are controlled on a numerical example.  相似文献   

7.
A detailed fracture mechanics analysis of bridge-toughening in a fiberreinforced composite is presented in this paper.The integral equation governing bridge-toughening as well as crack opening displacement (COD) for the composite withinterfacial layer is derived from the Castigliano's theorem and interface shear-lagmodel.A numerical result of the COD equation is obtained using the iteration solutionof the second Fredholm integral equation.In order to investigate the effect of variousparameters on the toughening,an approximate analytical solution of the equation ispresent and its error analysis is performed,which demonstrates the approximatesolution to be appropriate.A parametric study of the influence of the crack length,interracial shear modules,thickness of the interphase,fiber radius,fiber volumefraction and properties of materials on composite toughening is therefore carried out.The results are useful for experimental demonstration and toughening design includingthe fabrication process of the composite.  相似文献   

8.
A meshless approach based on the moving least square method is developed for elasto-plasticity analysis, in which the incremental formulation is used. In this approach, the displacement shape functions are constructed by using the moving least square approximation, and the discrete governing equations for elasto-plastic material are constructed with the direct collocation method. The boundary conditions are also imposed by collocation. The method established is a truly meshless one, as it does not need any mesh, either for the purpose of interpolation of the solution variables, or for the purpose of construction of the discrete equations. It is simply formulated and very efficient, and no post-processing procedure is required to compute the derivatives of the unknown variables, since the solution from this method based on the moving least square approximation is already smooth enough. Numerical examples are given to verify the accuracy of the meshless method proposed for elasto-rdasticity analysis.  相似文献   

9.
Linear surface gravity waves on Maxwell viscoelastic fluids with finite depth are studied in this paper. A dispersion equation describing the spatial decay of the gravity wave in finite depth is derived. A dimensionless memory (time) number 0 is introduced. The dispersion equation for the pure viscous fluid will be a specific case of the dispersion equation for the viscoelastic fluid as θ=0. The complex dispersion equation is numerically solved to investigate the dispersion relation. The influences of θ and water depth on the dispersion characteristics and wave decay are discussed. It is found that the role of elasticity for the Maxwell fluid is to make the surface gravity wave on the Maxwell fluid behave more like the surface gravity wave on the inviscid fluid.  相似文献   

10.
An optimal control method for seismic-excited building structures with multiple time delays is investigated in this paper. The system state equation with multiple time delays is discretized and transformed into a standard discrete form without any explicit time delay by a particular augmenting for state variables. A time-delay controller is then designed based on this standard equation using the discrete optimal control method. Effectiveness of the proposed controller is demonstrated by numerical simulations. Simulation results indicate that a very small time delay may result in the instability of the control system if it is not compensated in the control design. Time delay may be compensated effectively by the proposed controller, in the mean time, an effective control may be obtained. The proposed controller is valid for both small and large time delays.  相似文献   

11.
We consider the numerical solution of a singularly perturbed problem for the quasilinear parabolic differential equation, and construct a linear three-level finite difference scheme on a nonuniform grid. The uniform convergence in the sense of discrete L~2 norm is proved and numerical examples are presented.  相似文献   

12.
This work is the continuation of the discussions of[50]and[51].In this paper:(A)The Love-Kirchhoff equation of small deflection problem for elastic thin shellwith constant curvature are classified as the same several solutions of Schr(?)dingerequation,and we show clearly that its form in axisymmetric problem;(B)For example for the small deflection problem,we extract the general solution ofthe vibration problem of thin spherical shell with equal thickness by the force in centralsurface and axisymmetric external field,that this is distinct from ref.[50]in variable.Today the variable is a space-place,and is not time;(C)The von Kármán-Vlasov equation of large deflection problem for shallow shellare classified as the solutions of AKNS equations and in it the one-dimensional problem isclassified as the solution of simple Schr(?)dinger equation for eigenvalues problem,and wetransform the large deflection of shallow shell from nonlinear problem into soluble linearproblem.  相似文献   

13.
This paper describes a way of solving the reservoir simulation pressure equation using multigrid technique.The subroutine MG of four-grid method is presented.The result for2-D two-phase problem is exactly the same as that of the SOR method and the CPU time is much less than that of the latter one.  相似文献   

14.
A methodology is proposed for predicting the effective thermal conductivity of dilute suspensions of nanoparticles (nanofluids) based on rheology. The methodology uses the rheological data to infer microstructures of nanoparticles quantitatively, which is then incorporated into the conventional Hamilton-Crosser equation to predict the effective thermal conductivity of nanofluids. The methodology is experimentally validated using four types of nanofluids made of titania nanoparticles and titanate nanotubes dispersed in water and ethylene glycol. And the modified Hamilton-Zrosser equation successfully predicted the effective thermal conductivity of the nanofluids.  相似文献   

15.
This paper presents a new kind of method for solving the planeproblems of two-phase flow in porous media.The ellipticalpartial differential equation for pressure distribution is sol-ved by the finite element method,and then the semi-analyticalsolution for pressure gradient is used to determine the new sa-turation field according to the existing exact formula describ-ing the saturation propagation along the streamlines.The maindistinguishing feature and advantage of this kind of method arethe ability to overcome the numerical dispersion which is inhe-rent in the ordinary numerical simulation methods.and thereby,to give a precise and clear-cut position of the saturation dis-continuity in the water-oil displacement front.moreover.thesaturation equation,which should commonly be solved simultan-eously or alternatively with the pressure equation,is complete-ly avoided,so that the computing time is greatly reduced.  相似文献   

16.
According to the hypothesis that the dissipation of turbulent kinetic energy satisfieslog-normal distribution,a stochostic model of dissipation is provided and the Langevinmodel of velocity is modified Then a joint Pdf equation of turbulent vilocity anddissipation is derived.we solve numerically the joint Pdf equation using Monte Carlomethod and obtain satisfactory results for decaying turbulence and homogeneous turbulentshear flow.The preliminary results show that the model is well working.  相似文献   

17.
A three-dimensional discrete element model of the connective type is presented. Moreover, a three- dimensional numerical analysis code, which can carry out the transitional process from connective model (for continuum) to contact model (for non-continuum), is developed for simulating the mechanical process from continuum to non-continuum. The wave propagation process in a concrete block (as continuum) made of cement grout under impact loading is numerically simulated with this code. By comparing its numerical results with those by LS-DYNA, the calculation accuracy of the model and algorithm is proved. Furthermore, the failure process of the concrete block under quasi-static loading is demonstrated, showing the basic dynamic transitional process from continuum to non-continuum. The results of calculation can be displayed by animation. The damage modes are similar to the experimental results. The two numerical examples above prove that our model and its code are powerful and efficient in simulating the dynamic failure problems accompanying the transition from continuum to non-continuum. It also shows that the discrete element method (DEM) will have broad prospects for development and application.  相似文献   

18.
In this paper the macroscopic damping model for dynamical behavior of the structures with random polycrystalline configurations at micro–nano scales is established.First, the global motion equation of a crystal is decomposed into a set of motion equations with independent single degree of freedom(SDOF) along normal discrete modes, and then damping behavior is introduced into each SDOF motion.Through the interpolation of discrete modes, the continuous representation of damping effects for the crystal is obtained.Second, from energy conservation law the expression of the damping coefficient is derived, and the approximate formula of damping coefficient is given. Next, the continuous damping coefficient for polycrystalline cluster is expressed,the continuous dynamical equation with damping term is obtained, and then the concrete damping coefficients for a polycrystalline Cu sample are shown. Finally, by using statistical two-scale homogenization method, the macroscopic homogenized dynamical equation containing damping term for the structures with random polycrystalline configurations at micro–nano scales is set up.  相似文献   

19.
LIQUID-SOLID COUPLED SYSTEM OF MICROPUMP   总被引:1,自引:0,他引:1  
This paper employs the integral-averaged method of thickness to approximate the periodical flows in a piezoelectric micropump, with a shallow water equation including nonlinearity and viscous damp presented to characterize the flows in micropump. The finite element method is used to obtain a matrix equation of fluid pressure. The fluid pressure equation is combined with the vibration equation of a silicon diaphragm to construct a liquid-solid coupled equation for reflecting the interaction between solid diaphragm and fluid motion in a micropump. Numerical results of a mode analysis of the coupled system indicate that the natural frequencies of the coupled system are much lower than those of the non-coupled system. The influence of additional mass and viscous damp of fluid on the natural frequencies of the coupled system is more significant as the pump thickness is small. It is found that the vibration shape functions of silicon diaphragm of the coupled system are almost the same as those of the non-coupled system. This paper also gives the first-order amplitude-frequency relationship of the silicon diaphragm, which is necessary for the flow-rate-frequency analysis of a micropump.  相似文献   

20.
The mixed covolume method for the regularized long wave equation is developed and studied. By introducing a transfer operator γh , which maps the trial function space into the test function space, and combining the mixed finite element with the finite volume method, the nonlinear and linear Euler fully discrete mixed covolume schemes are constructed, and the existence and uniqueness of the solutions are proved. The optimal error estimates for these schemes are obtained. Finally, a numerical example is provided to examine the efficiency of the proposed schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号