首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cluster synchronization and rhythm dynamics are studied for a complex neuronal network with the small world structure connected by chemical synapses. Cluster synchronization is considered as that in-phase burst synchronization occurs inside each group of the network but diversity may take place among different groups. It is found that both one-cluster and multi-cluster synchronization may exist for chemically excitatory coupled neuronal networks, however, only multi-cluster synchronization can be achieved for chemically inhibitory coupled neuronal networks. The rhythm dynamics of bursting neurons can be described by a quantitative characteristic, the width factor. We also study the effects of coupling schemes, the intrinsic property of neurons and the network topology on the rhythm dynamics of the small world neuronal network. It is shown that the short bursting type is robust with respect to the coupling strength and the coupling scheme. As for the network topology, more links can only change the type of long bursting neurons, and short bursting neurons are also robust to the link numbers.  相似文献   

2.
The properties of firing synchronization of learning neuronal networks, electrically and chemically coupled ones, with small-world connectivity are studied. First, the variation properties of synaptic weights are examined. Next the effects of the synaptic learning rate on the properties of firing rate and synchronization are investigated. The influences of the coupling strength and the shortcut probability on synchronization are also explored. It is shown that synaptic learning suppresses over-excitement for the networks, helps synchronization for the electrically coupled neuronal network but destroys synchronization for the chemically coupled one. Both introducing shortcuts and increasing the coupling strength are helpful in improving synchronization of the neuronal networks. The spatio-temporal patterns illustrate and confirm the above results.  相似文献   

3.
Chaotic bursting is a fundamental behavior of neurons. In this paper, global and local burst synchronization is studied in a heterogeneous small-world neuronal network of non-identical Hindmarsh-Rose (HR) neurons with noise. It is found that the network can achieve global burst synchronization much more easily than phase synchronization and nearly complete synchronization. Moreover, local burst synchronized clusters have already formed before global burst synchronization happens. We study the effect of the shortcut-adding probability and the heterogeneity coefficient on local and global burst synchronization of the network and find that the introduction of shortcuts facilitates burst synchronization while the heterogeneity has little effect. Moreover, we study the spatiotemporal pattern of the network and find that there is an optimal coupling strength range in which the periodicity of the network is very apparent.  相似文献   

4.
The fluctuation of intracellular and extracellular ion concentration induces the variation of membrane potential, and also complex distribution of electromagnetic field is generated. Furthermore, the membrane potential can be modulated by time-varying electromagnetic field. Therefore, magnetic flux is proposed to model the effect of electromagnetic induction in case of complex electrical activities of cell, and memristor is used to connect the coupling between membrane potential and magnetic flux. Based on the improved neuron model with electromagnetic induction being considered, the bidirectional coupling-induced synchronization behaviors between two coupled neurons are investigated on Spice tool and also printed circuit board. It is found that electromagnetic induction is helpful for discharge of neurons under positive feedback coupling, while electromagnetic induction is necessary to enhance synchronization behaviors of coupled neurons under negative feedback coupling. The frequency analysis on isolate neuron confirms that the frequency spectrum is enlarged under electromagnetic induction, and self-induction effect is detected. These experimental results can be helpful for further dynamical analysis on synchronization of neuronal network subjected to electromagnetic radiation.  相似文献   

5.
To study the effect of electromagnetic induction on the spatiotemporal dynamic behavior of neural networks, in this paper, we have mainly studied both the synchronization behavior and the evolution of chimera states (CS) in coupled neural networks. To do this, a multilayer memristive neural network was constructed by selecting the Hindmarsh–Rose neurons as the network nodes, and the effect of electromagnetic induction is introduced by using the cubic flux-controlled memristive model as synapse. For simplicity, the following coupling scheme is adopted: only the coupling connections for the neurons between different layers are considered with memristive synapses, while those neurons in each layer are still bidirectional coupled with the classical electrical synapses. It is found that, by adjusting the coupled strength of electrical synapses and the parameters of memristive synapses, the coexistence behavior of coherent and incoherent states, i.e., the CS, could appear in each layer. It is interesting that the CS are also found in inter-layer memristive synapse network. Furthermore, we have discussed the synchronization behavior in this multilayer memristive neural network, one can find when the whole multilayer network is in a synchronization state, not only the spatiotemporal consistency of the CS in each layer neural networks is observed, but also the memductance of all memristive synapses is completely synchronized. Our results suggest that the electromagnetic induction may play an important role in regulating the dynamic behavior of neural networks, and the introduction of memristive synapse into the biological neural network will provide useful clues for revealing the memory behavior of the neural system in human brain.  相似文献   

6.
The influence of noise on the complete synchronization in a Morris–Lecar (ML) model neuronal system is studied in this work. Two individual ML neurons with different initial conditions can discharge completely synchronously when the noise intensity is large enough, and for a smaller reversal potential (V Ca), the uncoupled neuronal system could be induced to a complete synchronization state under smaller noise intensity. Two coupled ML neurons could be synchronized under very small noise intensity even in the case of weak coupling, the synchronization characteristics of the two coupled neurons are discussed by analyzing the Similarity Function (S(0)) of their membrane potentials, which proves that noise can promote the complete synchronization. The critical noise intensity (D j ) to induce complete synchronization in coupled ML neurons will decrease with the increase of V Ca. This result is helpful to study the synchronization and the code of a neural system.  相似文献   

7.
In this paper, effect of the coupling matrix with a weight parameter on synchronization pattern in a globally coupled network is investigated. On the basis of matrix theory, the threshold values of the coupling strength and the weight parameter for cluster synchronization have been obtained by utilizing the attractiveness criteria of the invariant synchronization manifold. It shows that cluster synchronization bifurcation comes forth, which concept is first put forward. That is to say, via changing the weight parameter and the coupling strength, the purpose of controlling the number of clusters is achieved, which provides a new idea for control the number of clusters in a network. Numerical simulations are given to demonstrate the theoretical results. In addition, the theoretical results and the numerical simulations also show that full synchronization may not be realized even if the network is globally coupled when there are some negative couplings.  相似文献   

8.
In this study, how the synaptic plasticity influences the collective bursting dynamics in a modular neuronal network is numerically investigated. The synaptic plasticity is described by a modified Oja’s learning rule. The modular network is composed of some sub-networks, each of them having small-world characteristic. The result indicates that bursting synchronization can be induced by large coupling strength between different neurons, which is robust to the local dynamical parameter of individual neurons. With the emergence of synaptic plasticity, the bursting dynamics in the modular neuronal network, particularly the excitability and synchronizability of bursting neurons, is detected to be changed significantly. In detail, upon increasing synaptic learning rate, the excitability of bursting neurons is greatly enhanced; on the contrary, bursting synchronization between interacted neurons is a little suppressed by the increase in synaptic learning rate. The presented findings could be helpful to understand the important role of synaptic plasticity on neural coding in realistic neuronal network.  相似文献   

9.
In this paper, we numerically study the effect of time-periodic coupling strength on the synchronization of firing activity in delayed Newman–Watts networks of chaotic bursting neurons. We first examine how the firing synchronization transitions induced by time delay under fixed coupling strength changes in the presence of time-periodic coupling strength, and then focus on how time-periodic coupling strength induces synchronization transitions in the networks. It is found that time delay can induce more synchronization transitions in the presence of time-periodic coupling strength compared to fixed coupling strength. As the frequency of time-periodic coupling strength is varied, the firing exhibits multiple synchronization transitions between spiking antiphase synchronization and in-phase synchronization of various firing behaviors including bursting, spiking, and both bursting and spiking, depending on the values of time delay. These results show that time-periodic coupling strength can increase the synchronization transitions by time delay and can induce multiple synchronization transitions of various firing behaviors in the neuronal networks. This means that time-periodic coupling strength plays an important role in the information processing and transmission in neural systems.  相似文献   

10.
Phase synchronization between nonlinearly coupled systems with 1:1 and 1:2 resonances is investigated. By introducing a concept of phase for a chaotic motion, it is demonstrated that for different internal resonances, with relatively small parameter epsilon, the difference between the mean frequencies of the two sub-oscillators approaches zero. This implies that phase synchronization can be achieved for weak interaction between the two oscillators. With the increase in coupling strength, fluctuations of the frequency difference can be observed, and for the primary resonance, the amplitudes of the fluctuations of the difference seem much smaller compared to the case with frequency ratio 1:2, even with the weak coupling strength. Unlike the enhanced effect on synchronization for linear coupling, the increase in nonlinear coupling strength results in the transition from phase synchronization to a non-synchronized state. Further investigation reveals that the states from phase synchronization to non-synchronization are related to the critical changes of the Lyapunov exponents, which can also be explained with the diffuse clouds.  相似文献   

11.
The responses of electrically coupled neuronal network to external stimulus injected on a single neuron are investigated. Stimulating the largest-degree neuron in the network, it is found that as the intensity of the stimulus increases, the network will be transiting from the resting to firing states and then restoring to the resting state, thereby showing a bounded firing region in the parameter space. Furthermore, it is found that as the coupling strength among the neurons decreases, the firing region is gradually expanded and, at the weak couplings, it could be separated into several disconnected subregions. By a simplified network model, we conduct a detailed analysis on the bifurcation diagram of the network dynamics in the two-dimensional parameter space spanned by stimulating intensity and coupling strength, and, by introducing a new coefficient named effective stimulus, explore the underlying mechanisms for the modified firing region. It is revealed that the coupling strength and stimulating intensity are equally important in evoking the network, but with different mechanisms. Specifically, the effective stimuli are shifted up globally by increasing the stimulating intensity, while are drawn closer by increasing the coupling strength. The dynamical responses of small-world and random complex networks to external stimulus are also investigated, which confirm the generality of the observed phenomena. The findings shed new lights on the collective behaviors of complex neuronal networks and might help our understandings on the recent experimental results.  相似文献   

12.
Recent advances in the experimental and theoretical study of dynamics of neuronal electrical firing activities are reviewed. Firstly, some experimental phenomena of neuronal irregular firing patterns, especially chaotic and stochastic firing patterns, are presented, and practical nonlinear time analysis methods are introduced to distinguish deterministic and stochastic mechanism in time series. Secondly, the dynamics of electrical firing activities in a single neuron is concerned, namely, fast-slow dynamics analysis for classification and mechanism of various bursting patterns, one- or two-parameter bifurcation analysis for transitions of firing patterns, and stochastic dynamics of firing activities (stochastic and coherence resonances, integer multiple and other firing patterns induced by noise, etc.). Thirdly, different types of synchronization of coupled neurons with electrical and chemical synapses are discussed. As noise and time delay are inevitable in nervous systems, it is found that noise and time delay may induce or enhance synchronization and change firing patterns of coupled neurons. Noise-induced resonance and spatiotemporal patterns in coupled neuronal networks are also demonstrated. Finally, some prospects are presented for future research. In consequence, the idea and methods of nonlinear dynamics are of great significance in exploration of dynamic processes and physiological functions of nervous systems.  相似文献   

13.
The synchronization in general coupled networks subjected to pinning control is investigated. Some generic stability criteria based on the Lyapunov approach are derived for such general controlled networks, which guarantee that the whole network can be pinned to a synchronization state by placing feedback control on only a small fraction of nodes. A real network of television audience flows across 28 satellite channels in China and a representative BA scale-free network composed of chaotic systems are shown, respectively, for illustration and verification. It is found that pinning stability can be improved via increasing pinning density and/or pinning strength for complete diagonal inner coupling.  相似文献   

14.
Amplitude chimera states, representing a spontaneous symmetry breaking of a population of coupled identical oscillators into two distinct clusters with one oscillating in spatial coherent amplitude, while the other displaying oscillations in a spatially incoherent manner, have been observed as a kind of transient dynamics in the process of transition to the in-phase synchronization in coupled limit-cycle oscillators. Here, we obtain a kind of stable amplitude chimera state in the chaotic regime of a system of repulsively coupled Lorenz oscillators. With the increment of the coupling strength, the coupled oscillators transit from spatiotemporal chaos to amplitude chimera states then to coherent oscillation death or chimera death states. Moreover, the number of clusters in amplitude chimera patterns has a power-law dependence on the number of coupled neighbors. The amplitude chimera and the chimera death states coexist at certain coupling strength. Moreover, the amplitude chimera and the amplitude death patterns are related to the initial condition for given coupling strength. Our findings of amplitude chimera states and chimera death states in coupled chaotic system may enrich the knowledge of the symmetry-breaking-induced pattern formation.  相似文献   

15.
The phenomenon of stochastic synchronization in globally coupled FitzHugh-Nagumo (FHN) neuron system subjected to spatially correlated Gaussian noise is investigated based on dynamical mean-field approximation (DMA) and direct simulation (DS). Results from DMA are in good quantitative or qualitative agreement with those from DS for weak noise intensity and larger system size. Whether the consisting single FHN neuron is staying at the resting state, subthreshold oscillatory regime, or the spiking state, our investigation shows that the synchronization ratio of the globally coupled system becomes higher as the noise correlation coefficient increases, and thus we conclude that spatial correlation has an active effect on stochastic synchronization, and the neurons can achieve complete synchronization in the sense of statistics when the noise correlation coefficient tends to one. Our investigation also discloses that the noise spatial correlation plays the same beneficial role as the global coupling strength in enhancing stochastic synchronization in the ensemble. The result might be useful in understanding the information coding mechanism in neural systems.  相似文献   

16.
Phase synchronization between nonlinearly coupled systems With 1:1 and 1:2 resonances is investigated.BY introducing a concept of phase for a chaotic motion.it is demonstrated that for difierent internal resonances,with relatively small parameter epsilon,the difierence between the mean frequencies of the two sub-oscillators approaches zero.This implies that phase synchronization can be achieved for weak interaction between the two oscillators.With the increase in coupling strength,fluctuations of the frequency difference can be observed,and for the primary resonance,the amplitudes of the fluctuations of the difference seem much smaller compared to the case with frequency ratio 1:2.even with the weak coupling strength.Unlike the enhanced effect on synchronization for linear coupling,the increase in nonlinear coupling strength results in the transition from phase synchronization to a non-synchronized state.Further investigation reveals that the states from phase synchronization to non-synchronization are related to the critical changes of the Lyapunov exponents,which carl also be explained with the diffuse clouds.  相似文献   

17.
生物神经网络系统动力学与功能研究   总被引:1,自引:1,他引:0  
生物神经系统是由数量极其巨大的神经元相互联结的信息网络系统,在生物体的感觉、认知和运动控制中发挥关键性的作用.首先介绍神经元、大脑和一些生物神经网络的生理结构和理论模型,然后分别介绍其放电活动和网络动态特性的一些重要问题,包括神经元的复杂放电模式、耦合神经元网络系统的同步活动和时空动力学、大脑联合皮层神经微回路的网络结构特征,以及工作记忆和抉择过程的动力学机制等. 最后对今后研究给出一些展望.   相似文献   

18.
In this paper,we investigate the evolution of spatiotemporal patterns and synchronization transitions in dependence on the information transmission delay and ion channel blocking in scale-free neuronal networks.As the underlying model of neuronal dynamics,we use the Hodgkin-Huxley equations incorporating channel blocking and intrinsic noise.It is shown that delays play a significant yet subtle role in shaping the dynamics of neuronal networks.In particular,regions of irregular and regular propagating excitatory fronts related to the synchronization transitions appear intermittently as the delay increases.Moreover,the fraction of working sodium and potassium ion channels can also have a significant impact on the spatiotemporal dynamics of neuronal networks.As the fraction of blocked sodium channels increases,the frequency of excitatory events decreases,which in turn manifests as an increase in the neuronal synchrony that,however,is dysfunctional due to the virtual absence of large-amplitude excitations.Expectedly,we also show that larger coupling strengths improve synchronization irrespective of the information transmission delay and channel blocking.The presented results are also robust against the variation of the network size,thus providing insights that could facilitate understanding of the joint impact of ion channel blocking and information transmission delay on the spatiotemporal dynamics of neuronal networks.  相似文献   

19.
In this paper, the globally synchronization of the general complex network is investigated. Firstly, we discuss the synchronization problem of the linearly coupled and directed network under the pinning control, and make comparison with the previous work about the undirected network. Sufficient conditions are obtained to guarantee the realization of synchronization. Secondly, the synchronization problem of nonlinearly coupled and undirected network under the pinning control is studied, and a criteria of getting synchronization is given. Furthermore, we introduced the adaptive adjustment of the coupling strength in nonlinearly coupled network. At last, we give simulation examples to verify our theoretical results.  相似文献   

20.

This work deals with the dynamics of a network of piezoelectric micro-beams (a stack of disks). The complete synchronization condition for this class of chaotic nonlinear electromechanical system with nearest-neighbor diffusive coupling is studied. The nonlinearities within the devices studied here are in both the electrical and mechanical components. The investigation is made for the case of a large number of coupled discrete piezoelectric disks. The problem of chaos synchronization is described and converted into the analysis of the stability of the system via its differential equations. We show that the complete synchronization of N identical coupled nonlinear chaotic systems having shift invariant coupling schemes can be calculated from the synchronization of two of them. According to analytical, semi-analytical predictions and numerical calculations, the transition boundaries for chaos synchronization state in the coupled system are determined as a function of the increasing number of oscillators.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号