首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphogenesis in living tissues is the paramount example of a time- and space-dependent orchestration of living matter where shape and order emerge from undifferentiated initial conditions. The genes encode the protein expression that eventually drives the emergence of the phenotype, while energy supply and cell-to-cell communication mechanisms are necessary to such a process. The overall control of the system likely exploits the laws of chemistry and physics through robust and universal processes. Even if the identification of the communication mechanisms is a question of fundamental nature, a long-standing investigation settled in the realm of chemical factors only (also known as morphogens) faces a number of apparently unsolvable questions. In this paper, we investigate at what extent mechanical forces, alone or through their biological feedbacks, can direct some basic aspects of morphogenesis in development biology. In this branch of mechano-biology, we discuss the typical rheological regimes of soft living matter and the related forces, providing a survey on how local mechanical feedbacks can control global size or even gene expression. We finally highlight the pivotal role of nonlinear mechanics to explain the emergence of complex shapes in living matter.  相似文献   

2.
Large-scale tomographic particle image velocimetry (tomographic PIV) was used to study large-scale flow structures of turbulent convective air flow in an elongated rectangular convection cell. Three flow cases have been investigated, that is, pure forced convection and mixed convection at two different Archimedes numbers. The Reynolds number was constant at Re?=?1.04?×?104 for all cases, while the Archimedes numbers were Ar?=?2.1 and 3.6 for the mixed convection cases, corresponding to Rayleigh numbers of Ra?=?1.6?×?108 and 2.8?×?108, respectively. In these investigations, the size of the measurement volume was as large as 840?mm?×?500?mm?×?240?mm. To allow for statistical analysis of the measured instantaneous flow fields, a large number of samples needed to be evaluated. Therefore, an efficient parallel implementation of the tomographic PIV algorithm was developed, which is based on a version of the simultaneous multiplicative reconstruction technique (SMART). Our algorithm distinguishes itself amongst other features by the fact that it does not store any weighting coefficients. The measurement of forced convection reveals an almost two-dimensional roll structure, which is orientated in the longitudinal cell direction. Its mean velocity field exhibits a core line with a wavy shape and a wavelength, which corresponds to the height and depth of the cell. In the instantaneous fields, the core line oscillates around its mean position. Under the influence of thermal buoyancy forces, the global structure of the flow field changes significantly. At lower Archimedes numbers, the resulting roll-like structure is shifted and deformed as compared to pure forced convection. Additionally, the core line oscillates much more strongly around its mean position due to the interaction of the roll structure with the rising hot air. If the Archimedes number is further increased, the roll-like structure breaks up into four counter-rotating convection rolls as a result of the increased influence of buoyancy forces. Moreover, large-scale tomographic PIV reveals that the orientation of these rolls reflects a ??W??-like shape in the horizontal X?CZ-plane of the convection cell.  相似文献   

3.
Numerical simulations are performed to examine the packing behavior of human red blood cells(RBCs). A combined ?nite-discrete element method(FDEM) is utilized, in which the RBCs are modeled as no-friction and no-adhesion solid bodies. The packed volume and the void ratio of a large number of randomly packed RBCs are clari?ed,and the effects of the RBC shape, the mesh size, the cell number, and the container size are investigated. The results show that the packed human RBCs with normal shape have a void ratio of 28.45%, which is slightly higher than that of the ?at or thick cells used in this study. Such information is bene?cial to the further understanding on the geometric features of human RBCs and the research on RBC simulations.  相似文献   

4.
黄辰阳  陈嘉伟  朱言言  廉艳平 《力学学报》2021,53(12):3240-3251
激光定向能量沉积技术作为一种同轴送粉式金属增材制造技术, 以其制造效率高、成形尺寸大等优势在航空、航天、交通等领域具有广阔的应用前景. 然而, 该技术在金属零件的尺寸精度和形状精度控制方面存在诸如尺寸偏差大、表面不平整等控形问题, 亟需发展高效高精度预测熔覆层成形尺寸形貌的数值模拟方法. 针对该问题, 本文建立了考虑激光-粉末-熔池交互过程的高保真多物理场数值模型. 其中, 采用高斯面热源等效激光光束, 利用拉格朗日质点法求解粉末输送及其与激光交互的过程, 进一步结合有限体积法和流体体积法求解粉末-熔池的交互及其流动凝固过程, 并通过TC17合金单道熔覆层实验结果进行了验证. 基于该模型, 首先预测了不同工艺参数下单道熔覆层形貌尺寸, 并对熔覆层形貌的变化趋势及其内在的物理机理进行了深入分析. 结果表明, 依赖于工艺参数的粉末温度分布和粉末基板能量分配比例对熔池流场和熔覆层尺寸有显著的影响. 本文所建立的数值模型可辅助激光定向能量沉积增材制造技术控形工艺参数优化, 所得结论可为成形件尺寸和形状精度控制提供理论指导.   相似文献   

5.
It is understood that congestion in traffic can be interpreted in terms of the instability of the equation of dynamic motion. The evolution of a traffic system from an unstable or metastable state to a globally stable state bears a strong resemblance to the phase transition in thermodynamics. In this work, we explore the underlying physics of the traffic system, by examining closely the physical properties and mathematical constraints of the phase transitions therein. By using a mesoscopic approach, one entitles the catastrophe model the same physical content as in the Landau's theory, and uncovers its close connections to the instability of the equation of motion and to the transition between different traffic states. In addition to the one-dimensional configuration space, we generalize our discussions to the higher-dimensional case, where the observed temporal oscillation in traffic flow data is attributed to the curl of a vector field. We exhibit that our model can reproduce the main features of the observed fundamental diagram including the inverse-λ shape and the wide scattering of congested traffic data. When properly parameterized, the main feature of the data can be reproduced reasonably well either in terms of the oscillating congested traffic or in terms of the synchronized flow.  相似文献   

6.
In this study the effects of induced jet at trailing edge of a two dimensional airfoil on its boundary layer shape, separation over surface and turbulent parameters behind trailing edge are numerically investigated and compared against a previous experimental data. After proving independency of results from mesh size and obtaining the required mesh size, different turbulent models are examined and RNG k-epsilon model is chosen because of good agreement with experimental data in velocity and turbulent intensity variations. A comparison between ordinary and jet induced cases, regarding numerical data, is made. The results showed that because of low number of measurement points in experimental study, turbulent intensity extremes are not captured. While in numerical study, these values and their positions are well calculated and exact variation of turbulent intensity is acquired. Also a study in effect of jet at high angles of attack is done and the results showed the ability of jet in controlling separation and reducing wake region.  相似文献   

7.
In this paper, the droplet formation process at a low capillary number in a flow focusing micro-channel is studied by performing a three-dimensional phase field benchmark based on the Cahn–Hilliard Navier–Stokes equations and the finite element method. Dynamic moving contact line and wetting condition are considered, and generalized Navier boundary condition (GNBC) is utilized to demonstrate the dynamic motion of the interface on wall surface. It is found that the mobility parameter plays a very critical role in the squeezing and breakup process to control the shape and size of droplets. We define the characteristic mobility Mc to represent the correct relaxation time of the interface. We also demonstrate that the characteristic mobility is associated with the physical process and should be kept as a constant as the product of the mobility tuning parameter χ and the square of interfacial thickness ε2. This criterion is applied for different interfacial thicknesses to correctly capture the physical process of droplet formation. Moreover, the size of the droplet, the velocity of the droplet along the downstream, and the period of droplet formation are compared between the numerical and experimental results which agree with each other both qualitatively and quantitatively. The presented model and criterion can be used to predict the dynamic behavior and movement of multiphase flows.  相似文献   

8.
A simple transformation of displacements considerably eases the explicit derivation of the finite element stiffness matrix for the axisymmetric elastic solid without causing a decline in the rate of convergence. The worsening of the condition of the global stiffness matrix caused by this transformation can be cured by scaling. A balanced numerical integration scheme maintaining the full rate of convergence is the one that integrates each term of the work and energy expressions to the order 2p ? 2, p being the degree of the complete polynomial in the shape functions.  相似文献   

9.
An experimental study of mixing induced by Rayleigh?CTaylor (RT) instability at an Atwood number (A t ) ~7.5?×?10?4 and Schmidt number (Sc) ~1,000 has been performed. A new transient experimental facility developed on the working principles of the draw-tank facility at Cambridge (Dalziel et al. in J Fluid Mech, 399:1?C48, 1999) has been established and enhanced to observe a higher (2×) Reynolds number regime. Water and brine were used to produce the RT density stratification. The evolution of the instability was studied using passive and reactive scalar techniques and quantified using optical diagnostic methods. The data were combined to estimate local and global mixing metrics representative of the mixing mechanism across the mixing layer. In comparison with parameters reported from analogous experiments, the mixing phenomenon at a high Sc shows a strong dependency on the initial conditions prevailing at the onset of the instability and the evidence of a delay in the mixing transition. Values of global and integral mixing parameters did not reach late-time asymptotic values that have been reported previously from steady-state experiments (Texas A&M Water Channel) and may be attributed to the effect of the barrier pull and the overturning mechanism that is thought to hinder the progress of the mixing layer.  相似文献   

10.
This Note concerns the study of the micromechanic behavior of shape memory alloys. The advantage of this model permits the coupling between the martensitic transformation and microstructural evolution observed after cycling. The model makes it possible to obtain consecutives equations, which explain at the same time, mechanical properties and the changing structures during the transformation. It provides original physical results on the global behavior of shape memory alloys. To cite this article: A. Alhamany et al., C. R. Mecanique 332 (2004).  相似文献   

11.
Shape memory polymers (SMPs) are polymers that can demonstrate programmable shape memory effects. Typically, an SMP is pre-deformed from an initial shape to a deformed shape by applying a mechanical load at the temperature TH>Tg. It will maintain this deformed shape after subsequently lowering the temperature to TL<Tg and removing the externally mechanical load. The shape memory effect is activated by increasing the temperature to TD>Tg, where the initial shape is recovered. In this paper, the finite deformation thermo-mechanical behaviors of amorphous SMPs are experimentally investigated. Based on the experimental observations and an understanding of the underlying physical mechanism of the shape memory behavior, a three-dimensional (3D) constitutive model is developed to describe the finite deformation thermo-mechanical response of SMPs. The model in this paper has been implemented into an ABAQUS user material subroutine (UMAT) for finite element analysis, and numerical simulations of the thermo-mechanical experiments verify the efficiency of the model. This model will serve as a modeling tool for the design of more complicated SMP-based structures and devices.  相似文献   

12.
In this study, a passive flow control experiment on a 3D bluff-body using vortex generators (VGs) is presented. The bluff-body is a modified Ahmed body (Ahmed in J Fluids Eng 105:429–434 1983) with a curved rear part, instead of a slanted one, so that the location of the flow separation is no longer forced by the geometry. The influence of a line of non-conventional trapezoïdal VGs on the aerodynamic forces (drag and lift) induced on the bluff-body is investigated. The high sensitivity to many geometric (angle between the trapezoïdal element and the wall, spanwise spacing between the VGs, longitudinal location on the curved surface) and physical (freestream velocity) parameters is clearly demonstrated. The maximum drag reduction is ?12%, while the maximum global lift reduction can reach more than ?60%, with a strong dependency on the freestream velocity. For some configurations, the lift on the rear axle of the model can be inverted (?104%). It is also shown that the VGs are still efficient even downstream of the natural separation line. Finally, a dynamic parameter is chosen and a new set-up with motorized vortex generators is proposed. Thanks to this active device. The optimal configurations depending on two parameters are found more easily, and a significant drag and lift reduction (up to ?14% drag reduction) can be reached for different freestream velocities. These results are then analyzed through wall pressure and velocity measurements in the near-wake of the bluff-body with and without control. It appears that the largest drag and lift reduction is clearly associated to a strong increase of the size of the recirculation bubble over the rear slant. Investigation of the velocity field in a cross-section downstream the model reveals that, in the same time, the intensity of the longitudinal trailing vortices is strongly reduced, suggesting that the drag reduction is due to the breakdown of the balance between the separation bubble and the longitudinal vortices. It demonstrates that for low aspect ratio 3D bluff-bodies, like road vehicles, the flow control strategy is much different from the one used on airfoils: an early separation of the boundary layer can lead to a significant drag reduction if the circulation of the trailing vortices is reduced.  相似文献   

13.
14.
This study demonstrates the potential for shockwave?Cturbulent boundary layer interaction control in air using low current DC constricted surface discharges forced by moderate strength magnetic fields. An analytical model describing the physics of magnetic field forced discharge interaction with boundary layer flow is developed and compared to experiments. Experiments are conducted in a Mach 2.6 indraft air tunnel with discharge currents up to 300?mA and magnetic field strengths up to 5?Tesla. Separation- and non-separation-inducing shocks are generated with diamond-shaped shockwave generators located on the wall opposite to the surface electrodes, and flow properties are measured with schlieren imaging, static wall pressure probes and acetone flow visualization. The effect of plasma control on boundary layer separation depends on the direction of the Lorentz force (j × B). It is observed that by using a Lorentz force that pushes the discharge upstream, separation can be induced or further strengthened even with discharge currents as low as 30?mA in a 3-Tesla magnetic field. If shock-induced separation is present, it is observed that by using Lorentz force that pushes the discharge downstream, separation can be suppressed, but this required higher currents, greater than 80?mA. Acetone planar laser scattering is used to image the flow structure in the test section and the reduction in the size of recirculation bubble and its elimination are observed experimentally as a function of actuation current and magnetic field strength.  相似文献   

15.
Granular materials are constituted of an assembly of particles. In spite of the simplicity of this assembly, its mechanical behaviour is complex. In the first stage we propose a framework to establish correlations between parameters of the supposedly continuous medium and grain properties which are assumed to be constant. However, this hypothesis is no longer valid in the case where physical (shape, size…) or mechanical properties (Young modulus Eg, Poisson's ratio νg…) of grains evolve during loading, causing the behaviour of the assembly to modify. We study the influence of the physical and mechanical parameters on grain breakage. We subsequently propose a way to model the influence of the grain breakage on granular materials and we introduce this influence in an elastoplastic constitutive model. Validations are made on two kinds of sands under isotropic and triaxial loading. Since the results of numerical computations corresponded well with the experimental data, we believe that the new model is capable of accurately simulating the behaviour of granular materials under a wide range of stresses and of taking into account, through new parameters, the individual strength of grains.  相似文献   

16.
Controlled interactions between fluidic actuators and the cross flow over the aft end of a wire-mounted axisymmetric wind tunnel bluff body model (ReD=2.3·105) are exploited for modification of the near wake dynamics, and the consequent global aerodynamic loads. Actuation is effected using an array of four aft-facing synthetic jet modules through narrow, azimuthally-segmented slots that are equally distributed around the perimeter of the tail end. The model is supported by eight wires, each including a miniature inline force transducer for measurements of the time-resolved tension. The model’s position is varied in a prescribed trajectory by synchronous activation of shape memory alloy (SMA) segments in each of the mounting wires, and the aerodynamic forces and moments are manipulated over a range of pitch attitude. The effectiveness of the flow control approach is demonstrated by decoupling of the wake response from the body’s pitch motion at a low pitch frequency (k=0.013). It is shown that, under the active control, the wake symmetry can be restored or its asymmetry can be amplified.  相似文献   

17.
Foxtail millet (Setaria italica) is one of the most valuable species in economic terms in the genus Setaria and plays an important role in human nutrition, animal feed, and agriculture. The present study described chemical, physical, and quality aspects of seeds of foxtail millet. Furthermore, the fluid-dynamic behavior of the seeds was evaluated in a conical spouted bed, which has advantages in terms of promoting the cyclic and regular movement of the seed particles. Dynamic parameters of spouting (minimum spouting velocity, stable and peak pressure drop) were determined and compared with those obtained from empirical correlations available in the literature. The results obtained from physical characterization showed that the seeds can be classified as belonging to Group D of Geldart, having a non-rough surface, mean diameter of 1.75 mm, and sphericity of 0.74. Fluid-dynamics analysis showed that the seeds are suitable for processing in a spouted bed, which is in agreement with the results of particle physical characterization.  相似文献   

18.
Continuum concepts and field values are related to local (scale-dependent) spacetime atomistic averages. Spatial averaging is effected by both weighting function and cellular localisation procedures, and resulting forms of linear momentum balance are compared. The former yields a local balance directly, with several candidate interaction stress fields. The latter results in a global balance involving a traction field expressible in terms of an interaction stress tensor field. In both approaches the Cauchy stress incorporates distinct interaction and thermokinetic contributions. Inter alia are addressed physically-distinguished choices of weighting function; the scale-dependence of the boundary of a body, its motion and material points thereof; physical interpretations of various candidate interaction stress tensors; temporal averaging and material systems whose content changes with time; and the possible relevance of the latter to investigating a molecular context for configurational forces.  相似文献   

19.
Design data for a family of ring-shaped elastic elements are derived using analytical, numerical and experimental methods. The development of a family of elastic elements for load cells operating at medium to low load level is considered in detail, using several approaches. Snapes analyzed were circular ring with integral bosses and ‘square’ ring. The effects of thickness, boss size and fillet radius (reduced to nondimensional form) on strain/load and defiection/load relationships are evaluated within a given sample space, considering a two-dimensional problem. Thin-ring and curved-beam theory support the analytical approach, with correction terms covering some departures from theoretical shape. Numerical analysis with the finite-element method was mainly used to evaluate the effects of boss size and shape. Accordingly, the required grid patterns were developed using a mesh-generating method capable of covering the range of parameters considered. A set of configurations was selected, enabling single and combined effects to be analyzed with little entanglement between estimates. For the square ring, frame theory and a limit solution for the case of the plate with central hole are resorted to. Photoelastic tests were performed, covering a range of shapes by sequential remachining of the model, and equal contigurations were analyzed with the finite-element method. Strain-gage tests on actual elastic elements were made, considering also the results of a series of tests carried out at the Metrology Institute some time ago. Results obtained yield comprehensive information on the effect of several parameters on the load-output transfer function of ring-shaped elastic elements.  相似文献   

20.
结构优化半解析灵敏度及误差修正改进算法   总被引:1,自引:0,他引:1  
提出结构半解析灵敏度分析及其针对刚体位移的误差修正方法的改进算法, 构建灵敏度分析与误差修正项可分离形式. 该方法实现简便, 数值精度不受摄动步长与单元数目的影响. 首先从总体角度推得静力问题的误差修正半解析灵敏度分析方法, 提出了位移误差修正灵敏度列式, 并给出算法实施途径; 然后将此思路推广于自振频率、屈曲临界载荷问题, 提出了相应的计算步骤. 随后, 给出梁单元与壳单元误差修正项的具体推导方法, 并分别使用两种单元构建有限元模型进行算例测试. 结果表明, 该方法适用于多种分析类型, 数值精度不受单元数目与摄动步长的影响. 由于灵敏度分析与误差修正项可以分开计算, 该方法支持将误差修正项直接叠加于灵敏度求解结果进行误差修正, 使已有灵敏度分析程序得到充分利用. 尤其对于复杂工程结构的优化设计, 特别是形状优化设计以及尺寸、形状混合优化设计, 相比于原误差修正方法, 实现更为简便, 效率有所提升, 能为半解析灵敏度分析方法及其程序实现提供新的思路.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号