首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
肖文甲  许宇翔  宋立军 《力学学报》2021,53(12):3252-3262
激光增材制造(laser additive manufacturing, LAM)技术极适合复杂整体构件的近净成形和高附值损伤件的快速修复. 然而, 激光增材制造熔池内部复杂的动态凝固过程显著影响成形件的终态组织, 进而制约其服役性能. 本文针对激光直接能量沉积(direct energy deposition by laser, DED-L) Inconel 718过程, 构建宏观传热传质与多相场耦合的多尺度数学模型, 解决了熔池宏?微观温度场的直接耦合, 并基于MPI并行程序设计实现了熔池二维的全域定量模拟, 研究了凝固过程中的晶粒演变过程. 结果表明, 模拟的熔池尺寸、凝固界面与实验结果吻合较好. 熔池凝固界面形态和晶体择优取向是影响晶粒演变的重要因素. 在熔池横截面上, 凝固过程主要受温度梯度方向的驱使, 取向与温度梯度方向夹角越小的晶粒占优生长. 在纵截面上, 晶粒的生长表现出弯曲生长以及“上三角”的晶粒特征, 温度梯度方向的渐变导致了晶粒弯曲, 相邻晶粒的竞争行为决定了晶粒形貌. 本文阐明了金属激光增材制造晶粒演变的机理, 有助于厘清增材制造热物理、化学、冶金过程, 为凝固组织的预测和调控提供理论指导. 此外, 该多尺度数学模型也适用于其他金属材料的激光增材制造过程.   相似文献   

2.
尼龙粉末是增材制造中常用的粉体材料,温度对其流动性有重要影响. 探索尼龙粉末增材制造预热温度下的流动性是研究选择性激光烧结(selective laser sintering, SLS)工艺中粉体铺展成形的基础. 选取SLS技术中的尼龙粉末为原材料,采用离散元数值方法,研究尼龙粉末的流动行为,是增材制造工艺数值模拟和铺粉工艺优化的研究热点. 以Hertz-Mindlin模型为基础,基于Hamaker理论模型和库伦定律,在尼龙粉末的接触动力学模型中引入范德华力和静电力,建立预热温度下尼龙粉末流动的离散元模型(discrete element method, DEM),通过对比相应实验结果,标定了该模型的参数. 对加热旋转圆筒中尼龙粉末流动过程进行了DEM数值模拟,校核了所建模型的正确性,并研究了粉体粒径分布对尼龙粉末流动特性的影响规律. 研究表明,尼龙粉末黏附力是静电力与范德华力的共同作用结果;随着粉体粒径的增大,尼龙粉末崩塌角增大,流动性增强;相对于高斯粒径分布,粒径均匀分布的尼龙粉末颗粒流动性更强. 研究结果可指导SLS中铺粉工艺的优化.   相似文献   

3.
尼龙粉末是增材制造中常用的粉体材料,温度对其流动性有重要影响.探索尼龙粉末增材制造预热温度下的流动性是研究选择性激光烧结(selective laser sintering, SLS)工艺中粉体铺展成形的基础.选取SLS技术中的尼龙粉末为原材料,采用离散元数值方法,研究尼龙粉末的流动行为,是增材制造工艺数值模拟和铺粉工艺优化的研究热点.以Hertz-Mindlin模型为基础,基于Hamaker理论模型和库伦定律,在尼龙粉末的接触动力学模型中引入范德华力和静电力,建立预热温度下尼龙粉末流动的离散元模型(discrete element method,DEM),通过对比相应实验结果,标定了该模型的参数.对加热旋转圆筒中尼龙粉末流动过程进行了DEM数值模拟,校核了所建模型的正确性,并研究了粉体粒径分布对尼龙粉末流动特性的影响规律.研究表明,尼龙粉末黏附力是静电力与范德华力的共同作用结果;随着粉体粒径的增大,尼龙粉末崩塌角增大,流动性增强;相对于高斯粒径分布,粒径均匀分布的尼龙粉末颗粒流动性更强.研究结果可指导SLS中铺粉工艺的优化.  相似文献   

4.
金属增材制造是近30年发展起来的一种新型制造技术, 不同于传统的减材制造过程, 它是基于离散-堆积原理, 根据设计的三维数据模型, 逐层加工获得立体实物的制造技术, 具有近净成形、快速制造、设计自由度高等优点, 特别适用于具有复杂几何结构的高熔点金属构件的直接成形, 在航天航空、核能工业、交通运输、生物医疗等领域具有巨大的技术优势和广阔的应用前景. 本文首先介绍了3种典型的金属增材制造技术原理, 包括选区激光熔化技术、激光金属沉积技术和选区电子束熔化技术. 随后对金属增材制造中的熔合不良、气孔、裂纹等缺陷的形成机理及其控制方法进行了综述, 以激光功率、扫描速度和扫描策略等工艺参数为例阐述了工艺参数对成形构件组织形貌的影响, 同时介绍了金属增材制造技术在传统合金、高熵合金以及非晶合金等材料中的应用及其力学性能. 最后对金属增材制造在扩充可打印的合金体系、量化缺陷与残余应力对材料性能的影响、发展可预测组织形貌的模拟方法、建立金属增材制造数据库和相关标准等方向进行了展望.   相似文献   

5.
王泽坤  刘谋斌 《力学学报》2021,53(12):3228-3239
与传统铸造技术相比, 基于金属粉末的增材制造技术因其生产周期短、可操作性强而在航空航天、生物医学等领域具有很好的优越性. 尤其是激光直接沉积技术, 因其自由度高, 在复杂构件制造、部件修复中有着广泛的运用. 但是该激光直接沉积过程涉及多物理场、跨尺度、极端高温高压环境和相变问题, 仅靠实验不能很好地研究其中的机理. 已有数值模拟技术一般通过预设或者射入拉格朗日点作为颗粒输入, 不能做到同时考虑环境气体、颗粒碰撞和相变过程. 本文在近期发展的基于核函数近似背景流场的半解析CFD-DEM耦合方法中引入了流体体积分数法(VOF), 发展了可以同时模拟含热、刚体颗粒、相变和自由液面及相变界面的半解析VOF-DEM (或半解析CFD-DEM-VOF)方法, 从而首次实现了真实物理环境下激光直接沉积技术的数值模拟. 其中, VOF中的气相为环境气体, 液相为熔融和凝固的金属相, 界面通过iso-Advector重构, DEM为未熔化的金属粉末, 且流体网格可解析离散元颗粒形状. 这一模拟框架可以有效复现颗粒之间的碰撞、粘结、熔化、融合, 以及熔池熔道的形成, 为激光直接沉积技术的数值模拟提供了开拓性的范式, 并可以被应用到其他带相变的颗粒系统中.   相似文献   

6.
稀土对Fe基合金激光熔覆层抗磨性能的影响   总被引:17,自引:5,他引:17  
在Fe基合金粉末中引入La2O3,通过激光熔覆得到了同基材结合良好的熔覆层,用扫描电子显微镜观察了稀土含量对熔覆层组织形貌的影响,用显微硬度计测量了熔覆层的硬度分布,并采用MM-200型摩擦磨损试验机考察了不同熔覆层在干摩擦条件下的摩擦磨损性能.结果表明,引入稀土有利于促进晶粒细化,提高熔覆层的组织均匀性及表面硬度,从而改善熔覆层的摩擦磨损性能.  相似文献   

7.
陈辉  闫文韬 《力学学报》2021,53(12):3206-3216
激光选区熔化(SLM)可以直接成形近全致密、性能接近锻件的复杂结构金属零件, 是金属增材制造(3D打印)领域的热点技术之一. SLM成形过程中粉末颗粒的热/动力学行为复杂, 与零件成形缺陷及力学性能紧密相关. 本文介绍了离散单元法(DEM)与计算流体力学(CFD)联合建模在SLM中的创新应用, 结合粉末床原位测试及成形在线监测, 探索SLM粉末铺设和粉末床熔融两个工艺环节的复杂粉体热/动力学行为机制. 研究发现, 粉末铺设过程中: 粉体的黏结效应、壁面效应和渗流效应3种机制相互竞争、共同支配粉末动力学行为并最终决定粉末床铺设质量. 粉末床熔融过程中: 熔池喷发的高温金属蒸汽带动环境保护气体形成内旋涡流, 由此驱动散体粉末形成复杂流固耦合运动, 导致粉末床飞溅与剥蚀现象; 热浮力效应对粉末运动不起主导作用. 文中提出了DEM-CFD双向动态耦合模型, 可以充分考虑离散粉末与熔池蒸发气体之间的热力耦合作用, 为SLM粉体熔融热/动力学行为的仿真模拟提供了一种新途径.   相似文献   

8.
由于激光熔覆过程中有温度变化快、局部温度梯度大和伴随固液相快速转化等特性,在熔池和热影响区会产生很大的残余应力和变形,不利于金属增材制造和局部修复的精确可控。本文对Ti-6Al-4V(TC4)合金开展激光熔覆实验,采用轮廓法测量了激光熔覆所产生的残余应力;通过三维热力耦合有限元模型计算了温度场和残余应力场,仿真计算结果与轮廓法测量的残余应力趋势一致。结果表明,残余应力在熔覆位置有最大拉伸应力,随着远离焊缝急剧变成压缩应力并逐渐减小。上述工作有利于研究熔覆过程中的温度分布规律及残余应力的生成机制,可为熔覆过程的工艺控制提供参考。  相似文献   

9.
利用激光熔覆技术在DZ125高温合金表面制备了Co基合金熔覆层,采用光学显微镜、扫描电镜(SEM)、X射线衍射仪及HV-1000型显微硬度计测试了Co基合金熔覆层的组织结构,截面显微硬度.利用自制冲蚀设备对其耐冲蚀性能进行研究.结果表明:熔覆层与基体形成良好的冶金结合,交界处组织具有定向凝固特征且晶粒生长方向垂直于界面;在不同角度下熔覆层耐冲蚀性能各异,熔覆层的硬度是材料抗冲蚀性能影响因素之一.  相似文献   

10.
金属增材制造是一种兼顾复杂结构和高性能构件成形需求的颠覆性制造技术, 在航空、航天、交通、核电等领域具有广阔的应用前景和发展空间. 该技术大规模推广应用所面临的制造效率和控形保性挑战是一个涉及力学、光学、材料、机械、控制等多学科交叉的难题. 本文针对其中涉及的若干关键力学问题, 阐述了近年来国内外在面向金属增材制造的结构拓扑优化设计、制造过程数值模拟、成形材料与结构的缺陷表征和性能评价方面的研究进展, 并对金属增材制造的结构设计?制造模拟?性能评价的发展趋势进行了展望.   相似文献   

11.
We demonstrate how efficient r-adapted grids for the prediction of tropical cyclone (TC) tracks can be constructed with the help of goal-oriented error estimates. The binary interaction of TCs in a barotropic model is used as a test case. We perform a linear sensitivity analysis for this problem to evaluate the contribution of each grid cell to an error measure correlated with the cyclone positions. This information allows us to estimate the local grid resolution required to minimize the TC position error. An algorithm involving the solution of a Poisson problem is employed to compute how grid points should be moved such that the desired local resolution is achieved. A hexagonal shallow-water version of the next-generation numerical weather prediction and climate model ICON is used to perform model runs on these adapted grids. The results show that for adequately chosen grid adaptation parameters, the accuracy of the track prediction can be maintained even when a coarser grid is used in regions for which the estimated error contribution is low. Accurate track predictions are obtained only when a grid with high resolution consisting of cells with nearly constant size and regular shape covers the part of the domain where the estimated error contribution is large. The number of grid points required to achieve a certain accuracy in the track prediction can be decreased substantially with our approach.  相似文献   

12.
A fully Lagrangian particle-based method is developed for simulating the FSI (Fluid–Structure Interaction) problems corresponding to incompressible fluid flows and elastic structures. First, the developed elastic structure model is verified by static and dynamic tests corresponding to a simple cantilever beam. The simulation results are compared with analytical and other researchers׳ numerical solutions. Then, the structure model is carefully coupled with a fluid model comprising of the so-called PNU-MPS (Pusan-National-University-modified Moving Particle Simulation) method and several recently developed enhanced schemes. The coupled fluid–structure method is applied to a dam break with an elastic gate and a violent sloshing flow with a hanging rubber baffle. The results of simulations are compared with those of the experiments by Antoci et al. (2007) and Idelsohn et al. (2008).  相似文献   

13.
Eulerian computational fluid dynamics (CFD) and Lagrangian computational structural dynamics (CSD) are used extensively in the aerospace industry. Combined mesh-based Eulerian and particle-based Lagrangian algorithms arevery effective for modelling and simulation due to the increased efficiency of combining the two numerical simulations. However, when compressible flows are simulated using a particle-based algorithm, calculations of strong discontinuity, such as a shock wave, may become unstable. In the present study, a numerical limiter is integrated with a particle-based CFD code to remedy this instability. The limiting algorithm incorporates an ‘averaging’ technique which calculates average values using the properties of neighbouring particles (also known as material points), including mass, momentum and energy. These averaged values are then input to a min-mode limiter to eliminate numerical noise and incur dissipation in the flow in areas with steep property gradients. The results of this algorithm show very stable solutions with minimal oscillations when applied to the one-dimensional shock tube problem and an increased accuracy with reduced oscillations for a two-dimensional cylinder cross-flow problem.  相似文献   

14.
《力学快报》2022,12(5):100366
In this work, the evolution of melt pool under single-point and single-line printing in the laser engineered net shaping (LENS) process is analyzed. Firstly, the basic structure of the melt pool model of the LENS process is established and the necessary assumptions are made. Then, the establishment process of the multi-physical field model of the melt pool is introduced in detail. It is concluded that the simulation model results are highly consistent with the online measurement experiment results in terms of melt pool profile, space temperature gradient, and time temperature gradient. Meanwhile, some parameters, such as the 3D morphology and surface fluid field of the melt pool, which are not obtained in the online measurement experiment, are analyzed. Finally, the influence of changing the scanning speed on the profile, peak temperature, and temperature gradient of the single-line melt pool is also analyzed, and the following conclusions are obtained: With the increase in scanning speed, the profile of the melt pool gradually becomes slender; The relationship between peak temperature and scanning speed is approximately linear in a certain speed range; The space temperature gradient at the tail of the melt pool under different scanning speeds hardly changes with the scanning speed, and the time temperature gradient at the tail of the melt pool is in direct proportion to the scanning speed.  相似文献   

15.
Nonprismatic beam modeling is an important issue in structural engineering, not only for versatile applicability the tapered beams do have in engineering structures, but also for their unique potential to simulate different kinds of material or geometrical variations such as crack appearing or spreading of plasticity along the beam. In this paper, a new procedure is proposed to find the exact shape functions and stiffness matrices of nonprismatic beam elements for the Euler–Bernoulli and Timoshenko formulations. The variations dealt with here include both tapering and abrupt jumps in section parameters along the beam element. The proposed procedure has found a simple structure, due to two special approaches: The separation of rigid body motions, which do not store strain energy, from other strain states, which store strain energy, and finding strain interpolating functions rather than the shape functions which suffer complex representation. Strain interpolating functions involve low-order polynomials and can suitably track the variations along the beam element. The proposed procedure is implemented to model nonprismatic Euler–Bernoulli and Timoshenko beam elements, and is verified by different numerical examples.  相似文献   

16.
Breakage of rocks or particulates plays a major role in various industries, such as mineral and ore processing. Many of the processes used for fracturing materials in these industries have the requirement to produce specified size and/or shape of the products. Numerical modelling can assist in understanding and predicting complex fracture processes, and can be used in designing the equipment and setting the process parameters to ensure desired product quality. In this paper, a mesh-free numerical method, called Smoothed Particle Hydrodynamics (SPH), is extended to predict impact fracture of rocks. SPH is a particle based Lagrangian method which is particularly suited to the analysis of fracture due to its capacity to model large deformation and track the free surfaces generated. A continuum damage model is used to predict the fracture of rocks. Evolution of damage is predicted using the strain history of each particle. Damage inhibits the transmission of tensile stress between particles, and once it reaches unity, the particle is unable to transmit tensile stress, resulting in a macro-crack. Connected macro-cracks lead to complete fragmentation.Firstly, an Unconfined Compressive Strength (UCS) test under uniaxial compression of a rock sample is modelled using SPH and compared against experiments to validate the capability of SPH for prediction of fracture in rocks. The SPH prediction matched the well-known experimentally observed diagonal fracture pattern. SPH is subsequently used to simulate brittle fracture of rocks during impact. Rock specimens of different shapes are examined to determine the effects of shape on both the fracture pattern and the energy dissipation during impact fracture. Rock shape is found to have considerable influence on the fracture process, fragment sizes, energy dissipation, and post-fracture motion of the fragments.  相似文献   

17.
Direct Metal Laser Sintering (DMLS) is one of the leading additive manufacturing processes, which produces complex metallic parts directly from the powder. One of the major problems of this rapid manufacturing process is an inhomogeneous temperature distribution, which leads to residual stress in the build part. Thus, temperature analyses must be performed, to better understand the temperature distribution and sintering behavior of the powder bed with a different laser recipe. In this study, a comprehensive three-dimensional numerical model was developed to understand the temperature distribution during direct metal laser sintering of AlSi10Mg alloy powder. The computer simulation was carried out in ANSYS 17.0 platform. Further, the effect of process parameters such as laser power and scan speed on the temperature distribution and sintering behavior were studied. From the simulation results, it was found that, when the laser power increased from 70 W to 190 W, the maximum temperature of the molten pool increased from 731?°C to 2672?°C, and the molten pool length changed from 0.286 mm to 2.167 mm. A reverse phenomenon was observed with an increase in scan speed. The sintering depth of the powder layer increases significantly from 0.061 mm to 0.872 mm with increasing the applied laser power, but decreased from 0.973 mm to 0.209 mm as a higher scan speed was applied. The developed model helps to optimize the powder layer thickness and minimize the wastage of excess powders during the sintering process.  相似文献   

18.
圆筒内旋转细长管是石油钻采工程中特有结构,细长管不仅与圆筒发生碰撞接触,还与管内流体和管外环空流体耦合,是一个复杂的非线性流固耦合系统。细长管固体域离散成梁单元,采用非线性碰撞接触动力学方程描述;管内外流体离散成六面体单元,采用计算流体动力学方程描述,在耦合界面处用任意拉格朗日欧拉法动网格来处理运动界面。根据梁单元位移...  相似文献   

19.
The influence of a new processing additive (fine particles of boron nitride) on the rheology and processability of polyolefins is studied. The equipment used includes an Instron capillary rheometer equipped with capillary and special annular dies (Nokia Maillefer wire coating crosshead) and two rheometers, namely a parallel-plate and a sliding-plate rheometer. Several types of boron nitride powders, varying in average particle size and distribution and in morphology are tested at various concentration levels. The additive with the smallest average particle size and free of agglomeration was found to have the greatest influence on the processability (melt fracture performance) of the polyolefins tested. Specifically, it was found that boron nitride not only eliminates surface melt fracture but also postpones the critical shear rate for the onset of gross melt fracture to significantly higher values, depending on the additive concentration, surface energy, and morphology. A flow visualization technique was used to visualize the polymer flow at the entrance of a transparent capillary die in order to determine the mechanism by which boron nitride eliminates gross melt fracture. Received: 18 January 2000 Accepted: 15 June 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号