首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In the last years, several techniques have been developed for the measurement of the three velocity components in a fluid plane or volume. Techniques as stereoscopic particle image velocimetry (SPIV) or tomographic PIV need a complex set-up and present serious restrictions when applied to confined liquid flows. Other like digital holographic PIV has some limitations in the particle concentration that can be measured. In this work, high-speed digital image plane holography has been applied for the measurement of the three velocity components in a complex geometry brain aneurysm model, using a two-cavity high-speed laser, one double frame camera and normal visualization, like in regular PIV. A portable and compact system has been built for adapting the high-speed laser short coherence length to the measurement of larger areas.  相似文献   

2.
Volumetric-correlation particle image velocimetry (VPIV) is a new technique that provides a 3-dimensional 2-component velocity field from a single image plane. This single camera technique is simpler and cheaper to implement than multi-camera systems and has the capacity to measure time-varying flows. Additionally, this technique has significant advantages over other 3D PIV velocity measurement techniques, most notably in the capacity to measure highly seeded flows. Highly seeded flows, often unavoidable in industrial and biological flows, offer considerable advantages due to higher information density and better overall signal-to-noise ratio allowing for optimal spatial and temporal resolution. Here, we further develop VPIV adding the capability to measure concentration and increasing the robustness and accuracy of the technique. Particle concentrations are calculated using volumetric auto-correlations, and subsequently the velocities are calculated using volumetric cross-correlation corrected for variations in particle concentration. Along with the ability to calculate the particle concentration profile, our enhanced VPIV produces significant improvement in the accuracy of velocity measurements. Furthermore, this technique has been demonstrated to be insensitive to out-of-plane flows. The velocity measurement accuracy of the enhanced VPIV exceeds that of standard micro-PIV measurements, especially in near-wall regions. The 3D velocity and particle-concentration measurement capability of VPIV are demonstrated using both synthetic and experimental results.  相似文献   

3.
This paper presents the application of optical measurement techniques in dense-gas flows in a heavy-gas channel to determine planar two-component (2C) velocity profiles and two-dimensional (2D) temperature profiles. The experimental approach is rather new in this area, and represents progress compared with the traditional techniques based on thermocouple measurements. The dense-gas flows are generated by the evaporation of liquid nitrogen. The optical measurement of both the velocity and density profiles is accomplished by the implementation of particle image velocimetry (PIV) and background-oriented schlieren (BOS) systems. Supplemental thermocouple measurements are used as independent calibrations to derive temperatures from the density data measured with the BOS system. The results obtained with both systems are used to quantify the dilution behavior of the propagating cloud through a global entrainment parameter . Its value agrees well with the results obtained by earlier studies.  相似文献   

4.
Complex applications in fluid dynamics research often require more highly resolved velocity data than direct measurements or simulations provide. The advent of stereo PIV and PCMR techniques has advanced the state-of-the-art in flow velocity measurement, but 3D spatial resolution remains limited. Here a new technique is proposed for velocity data interpolation to address this problem. The new method performs with higher quality than competing solutions from the literature in terms of accurately interpolating velocities, maintaining fluid structure and domain boundaries, and preserving coherent structures.  相似文献   

5.
We analyzed the non-Newtonian flow characteristics of blood moving in a circular tube flow using an X-ray PIV method and compared the experimental results with hemodynamic models. The X-ray PIV method was improved for measuring quantitative velocity fields of blood flows using a coherent synchrotron X-ray. Without using any contrast media, this method can visualize flow pattern of blood by enhancing the phase-contrast and interference characteristics of blood cells. The enhanced X-ray images were achieved by optimizing the sample-to-scintillator distance, the sample thickness, and hematocrit in detail. The quantitative velocity fields of blood flows inside opaque conduits were obtained by applying a two-frame PIV algorithm to the X-ray images of the blood flows. The measured velocity data show typical features of blood flow such as the yield stress and shear-thinning effects.  相似文献   

6.
PIV for granular flows   总被引:4,自引:0,他引:4  
 Particle image velocimetry (PIV) has been adapted for use in measuring particle displacement and velocity fields in granular flows. “Seeding” is achieved by using light and dark particles. The granular flow adjacent to a clear bounding wall is illuminated with a strobe, and the recorded images are analyzed using standard PIV techniques. The application is demonstrated by measuring convection rolls in a granular bed undergoing vertical oscillations. The PIV measured displacement is consistent with displacement of a marked layer of particles. Received: 29 January 1998/Accepted: 8 April 1999  相似文献   

7.
8.
风沙两相流测量技术研究进展   总被引:4,自引:0,他引:4  
杨斌  王元  王大伟 《力学进展》2006,36(4):580-590
围绕风沙两相流的测量, 归纳了过去几十年来在风沙动力学研究中所使用的风速测量技术和输沙率测量装置.着重讨论了高频测量在目前风沙动力学研究中的必要性, 分析了传统风速和输沙率测量装置的优缺点.对新一代光学测量技术------PIV在风沙两相流测量中的应用进行了较为详细的探讨.指出PIV测速技术在风沙两相流研究中具有广泛的应用前景, 使用PIV测速技术可以得到风沙流结构、两相速度场等宏观信息, 同时也可以进行单个颗粒运动状态的研究.   相似文献   

9.
 New techniques are developed to improve the velocity flow-field measurement capability within a free-surface boundary layer region on which progressive capillary-gravity waves are present. Due to the extremely thin but rather vortical characteristics of the aforementioned boundary layer, conventional particle image velocimetry (PIV) methods fail to estimate velocity (and vorticity) vectors at an acceptable detection rate. This failure is a direct consequence of optimal PIV parameters that are difficult to achieve in practice for such flow situations. A new technique, Sub-pattern PIV, is developed. This method has features similar to both the super-resolution PIV (Keane et al. 1995) and the particle image distortion (PID) technique (Huang et al. 1993), but is predicated upon a very differential philosophy. Another difficulty that arises in experiments to investigate surface boundary layer flows is that the oscillating and deforming air–water interface has a mirror-like behavior that affects the images, and generates very noisy data. An alternative experimental setup that utilizes the Brewster angle phenomenon is adopted and the specular effects of the free-surface are removed successfully. This Brewster angle imaging, along with the Sub-pattern PIV technique, is used for the target application – a free-surface boundary layer investigation. It proved to be very effective. The methodology of both techniques is discussed, and the modified PIV procedure is validated by numerical probabilistic simulations. Application to the capillary-gravity wave boundary layer is presented in a subsequent paper. Received: 31 July 1997/Accepted: 4 February 1998  相似文献   

10.
Limitation and improvement of PIV   总被引:5,自引:0,他引:5  
The deformation of particle image patterns by strong velocity gradients and out-of-pattern motions is a major source of error for the PIV (Particle Image Velocimetry) technique. This deformation is investigated and its effect on conventional PIV techniques is quantified for 2D flows. Simulations and comparisons with independent experiments verify the results.  相似文献   

11.
A new photographic method has been developed for the experimental study of 3D velocity fields, by means of which the three components of velocity can be simultaneously determined from one single photograph. This technique is based on the usual PIV and PTV ones; the production of appropriate stroboscopic illumination enables to measure the third component of velocity in the direction orthogonal to the illuminated plane. The hardware required for its implementation is modest, and the evaluation of the measurements is simple. Until now, this technique was only applied to low Reynolds number flows. The research was supported by the FNRS (National Foundation for Scientific Research); the authors also thank the ECC for financial support, as part of the Joule program.  相似文献   

12.
In this work we test a methodology for PIV measurements when a large field of view is required in planar confined geometries. Using a depth of field larger than the channel width, we intend to measure the in-plane variations of the velocity of the fluid averaged through the width of the channel, and we examine in which operating conditions this becomes possible. Measurements of the flow through a narrow channel by PIV are challenging because of the strong velocity gradients that develop between the walls. In particular, all techniques that use small particles as tracers have to deal with the possible migration of the tracers in the direction perpendicular to the walls. Among the complex mechanisms for migration, we focus on the so called Segré-Silberberg effect which can lead to transverse migration of neutrally buoyant tracers of finite size. We report experimental PIV measurements in a Hele-Shaw cell of 1 mm gap, which have been carried out by using neutrally buoyant tracers of size around 10 μm. By considering steady flows, we have observed, in particular flow regimes, the effect of an accumulation of the tracers at a certain distance to the wall due to the so called Segré-Silberberg effect. The particle migration is expected to occur at any Reynolds numbers but the migration velocity depends on the Reynolds number. A significant migration therefore takes place each time the observation duration is large enough compared to the migration time. For a given observation duration, the tracers remain uniformly distributed at low Reynolds numbers whereas they all accumulate at the equilibrium position at large ones. When using volume lighting, the PIV algorithm provides the average velocity of the flow through the gap at low Reynolds number, while it leads to the velocity of the flow at the equilibrium position of the tracers at large Reynolds numbers. By considering unsteady flows, we have observed that the migration does not occur if the timescale of flow variation is short compared to the time required for the parabolic flow to develop across the gap. In this case, there is no transverse velocity gradient and the PIV algorithm provides the fluid velocity. Altogether, these results allow us to propose guidelines for the interpretation of PIV measurements in confined flow, which are based on the theoretical predictions of the tracer migration derived by Asmolov [1].  相似文献   

13.
Particle image velocimetry with local field correction (LFC PIV) has been tested in the past to obtain two components of velocity in a two dimensional domain (2D2C). When compared to conventional correlation based algorithms, this advanced technique has shown improvements in three important aspects: robustness, resolution and ability to cope with large displacements gradients. A further step in the development of PIV algorithms consists in the combination of LFC with the stereo technique, which is able to obtain three components of velocity in a plane (2D3C PIV). In this work this combination is implemented and its performance is evaluated carrying out the following two different tasks:
–  Comparison of robustness and accuracy for large and small scale flow structures. This is carried out using three techniques: the conventional Stereo PIV, the Stereo-LFC PIV and the Stereo-Multigrid PIV enhanced with image distortion.
–  Insight on the limit of resolvable scales for the Stereo-LFC. This task is relevant because the resolution attainable by this combination is higher than what has been obtained by the rest of the herein used algorithms.
The first task has been achieved using synthetic images. Afterwards the coherence of the results has been checked with real images. The results show improvement of Stereo-LFC PIV in respect to Stereo-Multigrid PIV enhanced with image distortion. The performance of Stereo-LFC when only large scales are involved shows an increase of the dynamic range of measurable vorticity. When small scales are analysed, the magnitude of the error resulting when using Stereo-LFC is about half of the one obtained for the Stereo-Multigrid measurements. Results with errors below 20% have been achieved for some of the cases with peak vorticities as large as 1.8 Δt −1 (in the absence of out-of-plane displacements), out-of-plane loss of particle pairs of 65% (with a low peak vorticity of 0.06 Δt −1) and peak vorticities as large as 1.5 Δt −1 with 50% particle pair loss. For the second task most of the information has been obtained using real images. It has been found that the resolution limit is very dependent on the robustness of the algorithms against image defects and variability. The results show a remarkable improvement when using the Stereo-LFC PIV processing, although a full quantification and characterization would need further study because of the variety of noise sources possible in a real image.  相似文献   

14.
PIV measurements near a wall are generally difficult due to low seeding density, low velocity, high velocity gradient, and strong reflections. Such problems are often compounded by curved boundaries, which are commonly found in many industrial and medical applications. To systematically solve these problems, this paper presents two novel techniques for near-wall measurement, together named Interfacial PIV, which extracts both wall-shear gradient and near-wall tangential velocity profiles at one-pixel resolution. To deal with curved walls, image strips at a curved wall are stretched into rectangles by means of conformal transformation. To extract the maximal spatial information on the near-wall tangential velocity field, a novel 1D correlation function is performed on each horizontal pixel line of the transformed image template to form a “correlation stack”. This 1D correlation function requires that the wall-normal displacement component of the particles be smaller than the particle image diameter in order to produce a correlation signal. Within the image regions satisfying this condition, the correlation function yields peaks that form a tangential velocity profile. To determine this profile robustly, we propose to integrate gradients of tangential velocity outward from the wall, wherein the gradient at each wall-normal position is measured by fitting a straight line to the correlation peaks. The capability of Interfacial PIV was validated against Particle Image Distortion using synthetic image pairs generated from a DNS velocity field over a sinusoidal bed. Different velocity measurement schemes performed on the same correlation stacks were also demonstrated. The results suggest that Interfacial PIV using line fitting and gradient integration provides the best accuracy of all cases in the measurements of velocity gradient and velocity profile near wall surfaces.  相似文献   

15.
Stereoscopic PIV: validation and application to an isotropic turbulent flow   总被引:1,自引:1,他引:1  
 A new stereoscopic PIV system to measure the three velocity components is developed and applied to grid turbulence flows. This system uses two CCD cameras coupled with an accurate cross-correlation calculation method. An experimental test (based upon three-dimensional displacements) has been carried out to demonstrate the capability of this process to locate the maximum of correlation, and to detect accurately the 3D displacements. Experiments in a well-established turbulent flow have validated the method for quantitative measurements and a comparison with LDV results showed a good agreement in terms of mean and fluctuating velocities. Combined PIV and stereoscopic PIV measurements on a turbulent flow revealed the need to the stereoscopic systems to measure accurate 2D velocity fields. It has been shown that an error of up to 10% in the velocity fluctuation measured by conventional PIV could be attained due to 3D effects in highly turbulent cases. Finally, the digital cross-correlation technique adapted to the determination of small displacements seems to be the most suitable technique for stereoscopic PIV. Received: 22 July 1997/Accepted: 27 January 1998  相似文献   

16.
This is a first attempt to develop the Meshless Local Petrov–Galerkin method with Rankine source solution (MLPG_R method) to simulate multiphase flows. In this paper, we do not only further develop the MLPG_R method to model two‐phase flows but also propose two new techniques to tackle the associated challenges. The first technique is to form an equation for pressure on the explicitly identified interface between different phases by considering the continuity of the pressure and the discontinuity of the pressure gradient (i.e. the ratio of pressure gradient to fluid density), the latter reflecting the fact that the normal velocity is continuous across the interface. The second technique is about solving the algebraic equation for pressure, which gives reasonable solution not only for the cases with low density ratio but also for the cases with very high density ratio, such as more than 1000. The numerical tests show that the results of the newly developed two‐phase MLPG_R method agree well with analytical solutions and experimental data in the cases studied. The numerical results also demonstrate that the newly developed method has a second‐order convergent rate in the cases for sloshing motion with small amplitudes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Flow visualization, particle image velocimetry (PIV), and laser Doppler velocimetry (LDV) are among the most useful tools available for experimental aerodynamics studies. Implementation of these techniques, however, requires that seed material be introduced into the flow. The undesirable qualities of the seeding material often prevent the use of flow visualization and velocimetry techniques in many test environments. This is particularly true for large-scale, closed-circuit tunnels where facility operators must weigh the risks of facility contamination, sensor damage, and safety concerns that might result from the introduction of seed particles. Identification of a practical clean seeding material that minimizes or eliminates these concerns would enable flow visualization and velocimetry techniques to be deployed in these facilities. Here, we demonstrate two seeding systems that have the potential to provide such a solution. The first system is a new concept which uses liquid carbon dioxide that can be made to form discrete particles as it expands from a high-pressure tank. PIV measurements are demonstrated in several flows, including supersonic and subsonic tunnels, using these residue-free seed particles. The second system utilizes a combination of steam and liquid nitrogen to produce an aerosol or fog that serves as flow seeding. Water- or steam-based seeding has been previously demonstrated for flow visualization in subsonic tunnels; here however, we utilize this seed material for PIV and LDV measurements as well as for flow visualization in a large supersonic tunnel.  相似文献   

18.
This paper describes a novel derivative of the PIV method for measuring the velocity fields of droplets and gas phases simultaneously using fluorescence images rather than Mie scattering images. Two-phase PIV allows the simultaneous and independent velocity field measurement of the liquid phase droplets and ambient gas in the case of two-phase flow mixing. For phase discrimination, each phase is labelled by a different fluorescent dye: the gas phase is seeded with small liquid droplets, tagged by an efficient fluorescent dye while the droplets of the liquid phases are tagged by a different fluorescent dye. For each phase, the wavelength shift of fluorescence is used to separate fluorescence from Mie scattering and to distinguish between the fluorescence of each phase. With the use of two cross-correlation PIV cameras and adequate optical filters, we obtain two double frame images, one for each phase. Thus standard PIV or PTV algorithms are used to obtain the simultaneous and independent velocity fields of the two phases. Because the two-phase PIV technique relies on the ability to produce two simultaneous and independent images of the two phases, the choice of the labelling dyes and of the associated optical filter sets is relevant for the image acquisition. Thus a spectroscopic study has been carried out to choose the optimal fluorescent dyes and the associated optical filters. The method has been evaluated in a simple two-phase flow: droplets of 30–40 μm diameter, produced by an ultrasonic nozzle are injected into a gas coflow seeded with small particles. Some initial results have been obtained which demonstrate the potential of the method.  相似文献   

19.
20.
The effect of wall roughness, which is strong in turbulent flows often, is neglected in laminar flows, though without justification. With an experimental set-up which allows for changes in the relative roughness of a channel without requiring manipulation of the rough channel surface, it can be shown that there is a non-negligible influence of wall roughness even for laminar flows. Based on the consideration of entropy production in these flows, an increased dissipation rate in the vicinity of the roughness elements is identified as the physical mechanism that leads to an increased total head loss when the walls are no longer smooth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号