首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The technical basis and system set-up of a dual-plane stereoscopic particle image velocimetry (PIV) system, which can obtain the flow velocity (all three components) fields at two spatially separated planes simultaneously, is summarized. The simultaneous measurements were achieved by using two sets of double-pulsed Nd:Yag lasers with additional optics to illuminate the objective fluid flow with two orthogonally linearly polarized laser sheets at two spatially separated planes, as proposed by Kaehler and Kompenhans in 1999. The light scattered by the tracer particles illuminated by laser sheets with orthogonal linear polarization were separated by using polarizing beam-splitter cubes, then recorded by high-resolution CCD cameras. A three-dimensional in-situ calibration procedure was used to determine the relationships between the 2-D image planes and three-dimensional object fields for both position mapping and velocity three-component reconstruction. Unlike conventional two-component PIV systems or single-plane stereoscopic PIV systems, which can only get one-component of vorticity vectors, the present dual-plane stereoscopic PIV system can provide all the three components of the vorticity vectors and various auto-correlation and cross-correlation coefficients of flow variables instantaneously and simultaneously. The present dual-plane stereoscopic PIV system was applied to measure an air jet mixing flow exhausted from a lobed nozzle. Various vortex structures in the lobed jet mixing flow were revealed quantitatively and instantaneously. In order to evaluate the measurement accuracy of the present dual-plane stereoscopic PIV system, the measurement results were compared with the simultaneous measurement results of a laser Doppler velocimetry (LDV) system. It was found that both the instantaneous data and ensemble-averaged values of the stereoscopic PIV measurement results and the LDV measurement results agree well. For the ensemble-averaged values of the out-of-plane velocity component at comparison points, the differences between the stereoscopic PIV and LDV measurement results were found to be less than 2%. Received: 18 April 2000/Accepted: 2 February 2001  相似文献   

2.
 Particle Image Velocimetry (PIV) is now a well established experimental technique to measure two components of the velocity in a planar region of a flow field. This paper shows how its proven capabilities can be further extended by using holographic recording to register the particle displacements. Among other unique characteristics, holography enables the acquisition of multiple images on a single plate, and the recording of three dimensional images. These features are used to circumvent some of the limitations of conventional PIV. Some of these possibilities are demonstrated in this study by applying the technique to a high Reynolds number swirling flow using a lens-less off-axis orthogonal recording geometry. Received: 25 February 1998/ Accepted: 2 September 1998  相似文献   

3.
Cross-correlation Particle Image Velocimetry (PIV) has become a well known and widely used experimental technique. It has been already documented that difficulties arise resolving velocity structures smaller than the interrogation window. This is caused by signal averaging over this window. A new cross-correlation PIV method that eliminates this restriction is presented. The new method brings some other enhancements, such as the ability to deal with large velocity gradients, seeding density inhomogeneities, and high dispersion in the brightness of the particles. The final result is a method with a remarkable capability for accurately resolving small scale structures in the flow, down to a few times the mean distance between particles. When compared to particle tracking velocimetry, the new method is capable of obtaining measurements at high seeding density concentrations. Therefore, better overall performance is obtained, especially with the limited resolutions of video CCDs. In this paper, the new method is described and its performance is evaluated and compared to traditional PIV systems using synthetic images. Application to real PIV data are included and the results discussed. Received: 9 March 1998 / Accepted: 25 August 1998  相似文献   

4.
μPIV is a widely accepted tool for making accurate measurements in microscale flows. The particles that are used to seed the flow, due to their small size, undergo Brownian motion which adds a random noise component to the measurements. Brownian motion introduces an undesirable error in the velocity measurements, but also contains valuable temperature information. A PIV algorithm which detects both the location and broadening of the correlation peak can measure velocity as well as temperature simultaneously using the same set of images. The approach presented in this work eliminates the use of the calibration constant used in the literature (Hohreiter et al. in Meas Sci Technol 13(7):1072–1078, 2002), making the method system-independent, and reducing the uncertainty involved in the technique. The temperature in a stationary fluid was experimentally measured using this technique and compared to that obtained using the particle tracking thermometry method and a novel method, low image density PIV. The method of cross-correlation PIV was modified to measure the temperature of a moving fluid. A standard epi-fluorescence μPIV system was used for all the measurements. The experiments were conducted using spherical fluorescent polystyrene-latex particles suspended in water. Temperatures ranging from 20 to 80°C were measured. This method allows simultaneous non-intrusive temperature and velocity measurements in integrated cooling systems and lab-on-a-chip devices.  相似文献   

5.
A magnetic resonance velocimetry (MRV) experimental technique based on magnetic resonance imaging and capable of measuring the turbulent Reynolds stresses in a 3D flow domain is described. Results are presented in backward facing step flow in a square channel with a Reynolds number of 48,000 based on step height and freestream velocity at the step. MRV results are compared to particle image velocimetry (PIV) measurements in the centerplane containing the streamwise and cross-stream axes. MRV and PIV mean velocity measurements show excellent agreement. MRV measurements for Reynolds normal stresses compare to within ±20% of the PIV results while results for the turbulent shear are less accurate.  相似文献   

6.
The aerodynamic study of a row of axisymmetric jets impinging a concave wall is carried out from velocity measurements obtained by the standard and stereoscopic Particle Image Velocimetry. The principle and the specific aspects of the stereoscopic PIV set up, a recent technique of three-dimensional velocimetry, are explained. After a statistical data processing, the three-dimensional structure and the characteristics of multiple jets impinging a concave wall are described with the mean velocity fields and the turbulent values in several planes of the flow. To cite this article: V. Gilard, L.-E. Brizzi, C. R. Mecanique 334 (2006).  相似文献   

7.
 In this communication, the Digital Image Compression (DIC) – PIV system is introduced. The present system allows the measurement of mean and RMS velocities in turbulent flow fields, using JPEG digital image compression technique for on-line recording of thousands of images. The decompression and subsequent analysis of the images, performed by means of digital cross-correlation technique, is carried out off-line. Errors incurred by the application of the compression method are assessed and discussed. The effect of the compression is firstly analysed by linearly traversing (synthetic) computer-generated PIV-images at constant velocity. Secondly, accurate LDA measurements and data from direct numerical simulation (DNS) are used as a basis for the analysis in a low Reynolds number open water channel flow. The results show that excellent agreement between LDA and DIC–PIV measurements for mean and RMS velocities can be achieved using a compression factor up to 12. Received: 27 August 1996 / Accepted: 15 December 1998  相似文献   

8.
Second-order accurate particle image velocimetry   总被引:1,自引:0,他引:1  
 An adaptive, second-order accurate particle image velocimetry (PIV) technique is presented. The technique uses two singly exposed images that are interrogated using a modified cross-correlation algorithm. Consequently, any of the equipment commonly available for conventional PIV (such as dual head Nd: YAG lasers, interline transfer CCD cameras, etc.) can be used with this more accurate algorithm. At the heart of the algorithm is a central difference approximation to the flow velocity (accurate to order Δt 2) versus the forward difference approximation (accurate to order Δt) common in PIV. An adaptive interrogation region-shifting algorithm is used to implement the central difference approximation. Adaptive shifting algorithms have been gaining popularity in recent years because they allow the spatial resolution of the PIV technique to be maximized. Adaptive shifting algorithms also have the virtue of helping to eliminate velocity bias errors. The second- order accuracy resulting from the central difference approximation can be obtained with relatively little additional computational effort compared to that required for a standard first-order accurate forward difference approximation. The adaptive central difference interrogation (CDI) algorithm has two main advantages over adaptive forward difference interrogation (FDI) algorithms: it is more accurate, especially at large time delays between camera exposures; and it provides a temporally symmetric view of the flow. By comparing measurements of flow around a single red blood cell made using both algorithms, the CDI technique is shown to perform better than conventional FDI-PIV interrogation algorithms near flow boundaries. Cylindrical Taylor–Couette flow images, both experimental and simulated, are used to demonstrate that the CDI algorithm is significantly more accurate than conventional PIV algorithms, especially as the time delay between exposures is increased. The results of the interrogations are shown to agree quite well with analytical predictions and confirm that the CDI algorithm is indeed second-order accurate while the conventional FDI algorithm is only first-order accurate. Received: 15 June 2000/Accepted: 2 February 2001  相似文献   

9.
A hybrid technique is presented that combines scanning PIV with tomographic reconstruction to make spatially and temporally resolved measurements of the fine-scale motions in turbulent flows. The technique uses one or two high-speed cameras to record particle images as a laser sheet is rapidly traversed across a measurement volume. This is combined with a fast method for tomographic reconstruction of the particle field for use in conjunction with PIV cross-correlation. The method was tested numerically using DNS data and with experiments in a large mixing tank that produces axisymmetric homogeneous turbulence at \(R_\lambda \simeq 219\) . A parametric investigation identifies the important parameters for a scanning PIV set-up and provides guidance to the interested experimentalist in achieving the best accuracy. Optimal sheet spacings and thicknesses are reported, and it was found that accurate results could be obtained at quite low scanning speeds. The two-camera method is the most robust to noise, permitting accurate measurements of the velocity gradients and direct determination of the dissipation rate.  相似文献   

10.
A stereoscopic PIV (Particle Image Velocimetry) technique was used to measure the three-dimensional flow structure of the turbulent wake behind a marine propeller with five blades. The out-of-plane velocity component was determined using two CCD cameras with an angular displacement configuration. Four hundred instantaneous velocity fields were measured for each of four different blade phases, and ensemble averaged in order to find the spatial evolution of the propeller wake in the region from the trailing edge up to one propeller diameter (D) downstream. The influence of propeller loading conditions on the wake structure was also investigated by measuring the velocity fields at three advance ratios (J=0.59, 0.72 and 0.88). The phase-averaged velocity fields revealed that a viscous wake formed by the boundary layers developed along the blade surfaces. Tip vortices were generated periodically and the slipstream contracted in the near-wake region. The out-of-plane velocity component and strain rate had large values at the locations of the tip and trailing vortices. As the flow moved downstream, the turbulence intensity, the strength of the tip vortices, and the magnitude of the out-of-plane velocity component at trailing vortices all decreased due to effects such as viscous dissipation, turbulence diffusion, and blade-to-blade interaction.  相似文献   

11.
PIV study on a shock-induced separation in a transonic flow   总被引:1,自引:0,他引:1  
A transonic interaction between a steady shock wave and a turbulent boundary layer in a Mach 1.4 channel flow is experimentally investigated by means of particle image velocimetry (PIV). In the test section, the lower wall is equipped with a contour profile shaped as a bump allowing flow separation. The transonic interaction, characterized by the existence in the outer flow of a lambda shock pattern, causes the separation of the boundary layer, and a low-speed recirculating bubble is observed downstream of the shock foot. Two-component PIV velocity measurements have been performed using an iterative gradient-based cross-correlation algorithm, providing high-speed and flexible calculations, instead of the classic multi-pass processing with FFT-based cross-correlation. The experiments are performed discussing all the hypotheses linked to the experimental set-up and the technique of investigation such as the two-dimensionality assumption of the flow, the particle response assessment, the seeding system, and the PIV correlation uncertainty. Mean velocity fields are presented for the whole interaction with particular attention for the recirculating bubble downstream of the detachment, especially in the mixing layer zone where the effects of the shear stress are most relevant. Turbulence is discussed in details, the results are compared to previous study, and new results are given for the turbulent production term and the return to isotropy mechanism. Finally, using different camera lens, a zoom in the vicinity of the wall presents mean and turbulent velocity fields for the incoming boundary layer.  相似文献   

12.
An experimental investigation was carried out regarding a three-dimensional topology of a zero-pressure gradient turbulent boundary layer. In this study, the polarization separation technique has been applied to the PIV measurements. Two mutually perpendicular measurement planes have been employed in xy and xz planes, respectively. Synchronization between a stereoscopic PIV with another plane PIV system was made toward the detection of such salient features of the coherent structure as the legs and the head of the hairpin vortices. Polarization rotation via a half-waveplate and subsequent particle image separation using polarizer minimized the spurious particle images. The PIV results clearly demonstrate the presence of hairpin-like coherent vortical structures and coincidence between the near-wall quasi-streamwise vortex pair and the legs of the hairpin vortex.  相似文献   

13.
In the present study, we employed stereoscopic particle image velocimetry (PIV) to investigate the characteristics of turbulence structures in a drag-reduced turbulent channel flow with addition of surfactant. The tested drag-reducing fluid was a CTAC/NaSal/Water (CTAC: cetyltrimethyl ammonium chloride; NaSal: sodium salicylate) system at 25°C. The weight concentration of CTAC was 30 ppm. Stereoscopic PIV measurement was performed for a water flow (Re=1.1×104) and a CTAC solution flow (Re=1.5×104 with 54% drag reduction) in both the streamwise–spanwise and wall-normal-spanwise planes, respectively. The three-dimensionality of hairpin vortex structures in the near-wall region for wall-bounded turbulent flow was reproduced by conditionally averaging the stereoscopic two-dimensional-three-component velocity fields. A series of wall-normal vortex cores were found to align with the near-wall low-speed streaks with opposite vorticity signals at both sides of the streaks and with the vorticity decreased on average by about one order of magnitude in CTAC solution flow compared with water flow; the spanwise spacing between the near-wall low-speed streaks in the solution flow is increased by about 46%. The streamwise vorticity of the vortex cores appearing in the wall-normal-spanwise plane was also decreased by the use of drag-reducing surfactant additives.  相似文献   

14.
Results are presented from a single and dual lens endoscopic PIV imaging system with a view to application of PIV where optical access is restricted such as internal flows. The dual lens PIV images were processed using cross-correlation, a cubic mapping function and standard stereoscopic relationships. For the single lens system, the images were processed using cross-correlation and a quadratic distortion-mapping function. Results have shown the single lens system to have in-plane errors an order of magnitude greater than the stereoscopic dual lens endoscopic PIV system. These errors are generated by perspective effects. Use of the stereo arrangement is therefore recommended wherever quantitative 3D velocimetry data is acquired using an endoscopic system. To cite this article: M. Reeves, N.J. Lawson, C. R. Mecanique 332 (2004).  相似文献   

15.
We introduce the three-dimensional measurement technique (XPIV) based on a Particle Image Velocimetry (PIV) system. The technique provides three-dimensional and statistically significant velocity data. The main principle of the technique lies in the combination of defocus, stereoscopic and multi-plane illumination concepts. Preliminary results of the turbulent boundary layer in a flume are presented. The quality of the velocity data is evaluated by using the velocity profiles and relative turbulent intensity of the boundary layer. The analysis indicates that the XPIV is a reliable experimental tool for three-dimensional fluid velocity measurements.More information at:
G. HetsroniEmail:
  相似文献   

16.
In this article, a multiplane stereo-particle image velocimetry (PIV) system was implemented and validated to measure the three-component acceleration field in a plane of turbulent flows. The employed technique relies on the use of two stereoscopic particle image velocimetry (SPIV) systems to measure pairs of velocity fields superimposed in space but shifted in time. The time delay between the two velocity fields enables the implementation of a finite difference scheme to compute temporal derivatives. The use of two synchronized SPIV systems allows us to overcome the limited acquisition rate of PIV systems when dealing with highly turbulent flows. Moreover, a methodology based on the analysis of the spectral error distribution is described here to determine the optimal time delay to compute time derivatives. The present dual-time SPIV arrangement and the proposed analysis method are applied to measure three-component acceleration fields in a cross section of a subsonic plane turbulent mixing layer.  相似文献   

17.
Measuring the turbulent kinetic energy dissipation rate in an enclosed turbulence chamber that produces zero-mean flow is an experimental challenge. Traditional single-point dissipation rate measurement techniques are not applicable to flows with zero-mean velocity. Particle image velocimetry (PIV) affords calculation of the spatial derivative as well as the use of multi-point statistics to determine the dissipation rate. However, there is no consensus in the literature as to the best method to obtain dissipation rates from PIV measurements in such flows. We apply PIV in an enclosed zero-mean turbulent flow chamber and investigate five methods for dissipation rate estimation. We examine the influence of the PIV interrogation cell size on the performance of different dissipation rate estimation methods and evaluate correction factors that account for errors related to measurement uncertainty, finite spatial resolution, and low Reynolds number effects. We find the Re λ corrected, second-order, longitudinal velocity structure function method to be the most robust method to estimate the dissipation rate in our zero-mean, gaseous flow system.  相似文献   

18.
Stereoscopic micro particle image velocimetry   总被引:1,自引:0,他引:1  
A stereoscopic micro-PIV (stereo-μPIV) system for the simultaneous measurement of all three components of the velocity vector in a measurement plane (2D–3C) in a closed microchannel has been developed and first test measurements were performed on the 3D laminar flow in a T-shaped micromixer. Stereomicroscopy is used to capture PIV images of the flow in a microchannel from two different angles. Stereoscopic viewing is achieved by the use of a large diameter stereo objective lens with two off-axis beam paths. Additional floating lenses in the beam paths in the microscope body allow a magnification up to 23×. The stereo-PIV images are captured simultaneously by two CCD cameras. Due to the very small confinement, a standard calibration procedure for the stereoscopic imaging by means of a calibration target is not feasible, and therefore stereo-μPIV measurements in closed microchannels require a calibration based on the self-calibration of the tracer particle images. In order to include the effects of different refractive indices (of the fluid in the microchannel, the entrance window and the surrounding air) a three-media-model is included in the triangulation procedure of the self-calibration. Test measurement in both an aligned and a tilted channel serve as an accuracy assessment of the proposed method. This shows that the stereo-μPIV results have an RMS error of less than 10% of the expected value of the in-plane velocity component. First measurements in the mixing region of a T-shaped micromixer at Re = 120 show that 3D flow in a microchannel with dimensions of 800 × 200 μm2 can be measured with a spatial resolution of 44 × 44 × 15 μm3. The stationary flow in the 200 μm deep channel was scanned in multiple planes at 22 μm separation, providing a full 3D measurement of the averaged velocity distribution in the mixing region of the T-mixer. A limitation is that this approach requires a stereo-objective that typically has a low NA (0.14–0.28) and large depth-of-focus as opposed to high NA lenses (up to 0.95 without immersion) for standard μPIV.  相似文献   

19.
Experimental dual plane particle image velocimetry (PIV) data are assessed using direct numerical simulation (DNS) data of a similar flow with the aim of studying the effect of averaging within the interrogation window. The primary reason for the use of dual plane PIV is that the entire velocity gradient tensor and hence the full vorticity vector can be obtained. One limitation of PIV is the limit on dynamic range, while DNS is typically limited by the Reynolds number of the flow. In this study, the DNS data are resolved more finely than the PIV data, and an averaging scheme is implemented on the DNS data of similar Reynolds number to compare the effects of averaging inherent to the present PIV technique. The effects of averaging on the RMS values of the velocity and vorticity are analyzed in order to estimate the percentage of turbulence intensity and enstrophy captured for a given PIV resolution in turbulent boundary layers. The focus is also to identify vortex core angle distributions, for which the two-dimensional and three-dimensional swirl strengths are used. The studies are performed in the logarithmic region of a turbulent boundary layer at z + = 110 from the wall. The dual plane PIV data are measured in a zero pressure gradient flow over a flat plate at Re τ = 1,160, while the DNS data are extracted from a channel flow at Re τ = 934. Representative plots at various wall-normal locations for the RMS values of velocity and vorticity indicate the attenuation of the variance with increasing filter size. Further, the effect of averaging on the vortex core angle statistics is negligible when compared with the raw DNS data. These results indicate that the present PIV technique is an accurate and reliable method for the purposes of statistical analysis and identification of vortex structures.  相似文献   

20.
Velocity and surface pressure measurements in an open cavity   总被引:1,自引:0,他引:1  
Subsonic flow of approximately Mach 0.2 over cavities with L/D ratios of 5.16 and 1.49 were studied experimentally using particle image velocimetry (PIV), surface pressure measurements, and hot-wire measurements. The incoming boundary layer was turbulent in both cases. The PIV data was analyzed to yield mean flow characteristics, vorticity field information, and two-point statistics for the velocity field. The hot-wire data was combined with surface pressure measurements to detail the correlations between velocity and pressure fluctuations. An analysis of the correlation between surface pressure measurements shows contrasting characteristics for the two cavity aspect ratios. The PIV data was combined with surface pressure measurements through the application of quadratic stochastic estimation to predict the time-dependent behavior of the velocity field. An examination of the results supports the existence of different cavity flow modes, as has been suggested in much of the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号