首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In this paper, a small Hopfield neural network with three neurons is studied, in which one of the three neurons is considered to be exposed to electromagnetic radiation. The effect of electromagnetic radiation is modeled and considered as magnetic flux across membrane of the neuron, which contributes to the formation of membrane potential, and a feedback with a memristive type is used to describe coupling between magnetic flux and membrane potential. With the electromagnetic radiation being considered, the previous steady neural network can present abundant chaotic dynamics. It is found that hidden attractors can be observed in the neural network under different conditions. Moreover, periodic motion and chaotic motion appear intermittently with variations in some system parameters. Particularly, coexistence of periodic attractor, quasiperiodic attractor, and chaotic strange attractor, coexistence of bifurcation modes and transient chaos can be observed. In addition, an electric circuit of the neural network is implemented in Pspice, and the experimental results agree well with the numerical ones.  相似文献   

2.
This paper investigates the synchronization problem of memristive systems with multiple networked input and output delays via observer-based control. A memristive system is set up, and the fuzzy method has been employed to linearize the dynamical system of the memristive system; the networked input and output delays are considered in the synchronization problem of this system. A truncated predictor feedback approach is employed to design the observers. Under certain restrictions, a class of finite-dimensional observer-based output feedback controllers is designed. A numerical example is carried out to demonstrate the effectiveness of the proposed methods.  相似文献   

3.
Du  Chuanhong  Liu  Licai  Zhang  Zhengping  Yu  Shixing 《Nonlinear dynamics》2021,104(1):765-787
Nonlinear Dynamics - By coupling a variable of the memristor in one memristive chaotic circuit with another memristor, an approach to construct a high-dimensional memristive chaotic system is...  相似文献   

4.
To study the effect of electromagnetic induction on the spatiotemporal dynamic behavior of neural networks, in this paper, we have mainly studied both the synchronization behavior and the evolution of chimera states (CS) in coupled neural networks. To do this, a multilayer memristive neural network was constructed by selecting the Hindmarsh–Rose neurons as the network nodes, and the effect of electromagnetic induction is introduced by using the cubic flux-controlled memristive model as synapse. For simplicity, the following coupling scheme is adopted: only the coupling connections for the neurons between different layers are considered with memristive synapses, while those neurons in each layer are still bidirectional coupled with the classical electrical synapses. It is found that, by adjusting the coupled strength of electrical synapses and the parameters of memristive synapses, the coexistence behavior of coherent and incoherent states, i.e., the CS, could appear in each layer. It is interesting that the CS are also found in inter-layer memristive synapse network. Furthermore, we have discussed the synchronization behavior in this multilayer memristive neural network, one can find when the whole multilayer network is in a synchronization state, not only the spatiotemporal consistency of the CS in each layer neural networks is observed, but also the memductance of all memristive synapses is completely synchronized. Our results suggest that the electromagnetic induction may play an important role in regulating the dynamic behavior of neural networks, and the introduction of memristive synapse into the biological neural network will provide useful clues for revealing the memory behavior of the neural system in human brain.  相似文献   

5.
Xiu  Chunbo  Zhou  Ruxia  Zhao  Shaoda  Xu  Guowei 《Nonlinear dynamics》2021,104(1):789-805
Nonlinear Dynamics - In order to enhance the chaotic degree of cellular neural network (CNN), the memristive characteristic is combined in CNN, and a five-dimensional memristive CNN hyperchaotic...  相似文献   

6.
A novel memristive chaotic circuit is proposed by replacing the Chua’s diode in modified Chua’s circuit with a smooth active memristor, and the corresponding memristive model is analyzed and validated. The equilibrium point set, dissipativity and stability of this new chaotic circuit are developed theoretically. The dynamic characteristics for the new system are presented by means of phase diagrams, Lyapunov exponents, bifurcation diagrams and Poincaré maps. The coexistence of the memristive system is carried out from the perspective of asymmetric coexistence and symmetry coexistence. In addition, the coexistence of multiple states is studied by a more direct method with initial value as the system variable to gain a more intuitive observation. The circuit model of the memristive chaotic system is designed through Multisim simulation software. Finally, the memristive chaotic sequence is used to encrypt the image, and the influence of multistability on the encryption is investigated by the histogram, correlation and key sensitivity. The results show that the proposed new memristive chaotic system has high security.  相似文献   

7.
This paper presents a theoretical stability analysis of a memristive oscillator derived from Chua’s circuit in order to identify its different dynamics, which are mapped in parameter spaces. Since this oscillator can be represented as a nonlinear feedback system, its stability is analyzed using the method based on describing functions, which allows to predict fixed points, periodic orbits, hidden dynamics, routes to chaos, and unstable states. Bifurcation diagrams and attractors obtained from numerical simulations corroborate theoretical predictions, confirming the coexistence of multiple dynamics in the operation of this oscillator.  相似文献   

8.
The fluctuation of intracellular and extracellular ion concentration induces the variation of membrane potential, and also complex distribution of electromagnetic field is generated. Furthermore, the membrane potential can be modulated by time-varying electromagnetic field. Therefore, magnetic flux is proposed to model the effect of electromagnetic induction in case of complex electrical activities of cell, and memristor is used to connect the coupling between membrane potential and magnetic flux. Based on the improved neuron model with electromagnetic induction being considered, the bidirectional coupling-induced synchronization behaviors between two coupled neurons are investigated on Spice tool and also printed circuit board. It is found that electromagnetic induction is helpful for discharge of neurons under positive feedback coupling, while electromagnetic induction is necessary to enhance synchronization behaviors of coupled neurons under negative feedback coupling. The frequency analysis on isolate neuron confirms that the frequency spectrum is enlarged under electromagnetic induction, and self-induction effect is detected. These experimental results can be helpful for further dynamical analysis on synchronization of neuronal network subjected to electromagnetic radiation.  相似文献   

9.
Wu  Fuqiang  Guo  Yitong  Ma  Jun 《Nonlinear dynamics》2022,109(3):2063-2084

Dynamical modeling of nervous systems is of fundamental importance in many scientific fields containing the topics relative to computational neuroscience and biophysics. Many feasible mathematical models have been suggested in the explanation and prediction of some features of neural activities. Considering the special experimental findings and the computational efficiency, it is necessary to find a perfect balance between estimating biophysical functions with complete dynamics and reducing complexity when a tractable model is built. In this paper, a chemical synaptic model is reproduced by using a memristive synapse because it not only remains synaptic characteristic but also exhibits a pinched hysteresis loop and active feature locally. That is, a neuron activated by chemical synapse can produce similar firing modes as the neuron coupled by a memristive synapse, and both the chemical synapse and memristive synapse have similar field effect and biophysical properties. By calculating the one-parameter and two-parameter bifurcation as well as the Lyapunov exponent spectrum, it is confirmed that a neuron can be excited by the chemical synapse or the memristive synapse for generating chaotic firing patterns. Oscillation of the circuit composed of neuron and functional synapse is analyzed, suggesting that there exists a relation between the local activity and the edge of chaos via Hopf bifurcation. A modular circuit is designed to construct large-scale neural network. These results in this paper provide new evidences for application of memristive components and guide us to know the biophysical function of chemical synapse from physical viewpoint, in which the chemical synapse could be a kind of memristive synapse because of the same biophysical function.

  相似文献   

10.
In this paper, a hyperchaotic memristive circuit based on Wien-bridge chaotic circuit was designed. The mathematical model of the new circuit is established by using the method of normalized parameter. The equilibrium point and the stability point of the system are calculated. Meanwhile, the stable interval of corresponding parameter is determined. Using the conventional dynamic analysis method, the dynamical characteristics of the system are analyzed. During the analysis, some special phenomenon such as coexisting attractor is observed. Finally, the circuit simulation of system is designed and the practical circuit is realized. The results of theoretical analysis and numerical simulation show that the Wien-bridge hyperchaotic memristive circuit has very rich and complicated dynamical characteristics. It provides a theoretical guidance and a data support for the practical application of memristive chaotic system.  相似文献   

11.
An electronic model of Duffing oscillator with a characteristic memristive nonlinear element is proposed instead of the classical cubic nonlinearity. The memristive Duffing oscillator circuit system is mathematically modeled, and the stability analysis presents the evolution of the proposed system. The dynamical behavior of this circuit is investigated through numerical simulations, statistical analysis, and real-time hardware experiments, which have been carried out under the external periodic force. The chaotic dynamics of the circuit is studied by means of phase diagram. It is found that the proposed circuit system shows complex behaviors, like bifurcations and chaos, three tori, transient chaos, and intermittency for a certain range of circuit parameters. The observed phenomena and scenario are illustrated in detail through experimental and numerical studies of memristive Duffing oscillator circuit. The existence of regular and chaotic behaviors is also verified by using 0–1 test measurements. In addition, the robustness of the signal strength is confirmed through signal-to-noise ratio. The numerically observed results are confirmed from the laboratory experiment.  相似文献   

12.
In this paper, we investigate the cluster synchronization problem for networks with nonlinearly coupled nonidentical dynamical systems and asymmetrical coupling matrix by using pinning control. We derive sufficient conditions for cluster synchronization for any initial values through a feedback scheme and propose an adaptive feedback algorithm that adjusts the coupling strength. Some numerical examples are then given to illustrate the theoretical results.  相似文献   

13.
Ye  Xiaolin  Wang  Xingyuan  Gao  Suo  Mou  Jun  Wang  Zhisen  Yang  Feifei 《Nonlinear dynamics》2020,99(2):1489-1506
Nonlinear Dynamics - In this paper, a new seventh-order mixed memristive chaotic circuit was designed, and the new mathematical model of the system was established. The origin as the only...  相似文献   

14.
This paper studies a small Hopfield neural network with a memristive synaptic weight. We show that the previous stable network after one weight replaced by a memristor can exhibit rich complex dynamics, such as quasi-periodic orbits, chaos, and hyperchaos, which suggests that the memristor is crucial to the behaviors of neural networks and may play a significant role. We also prove the existence of a saddle periodic orbit, and then present computer-assisted verification of hyperchaos through a homoclinic intersection of the stable and unstable manifolds, which gives a positive answer to an interesting question that whether a 4D memristive system with a line of equilibria can demonstrate hyperchaos.  相似文献   

15.
考虑间隙反馈控制时滞的磁浮车辆稳定性研究   总被引:1,自引:0,他引:1  
吴晗  曾晓辉  史禾慕 《力学学报》2019,51(2):550-557
常导磁吸型(EMS)磁悬浮列车在悬浮控制中的每个环节,时滞是不可避免的,当时滞超过一定程度后,系统有可能失稳.本文针对EMS磁浮列车控制环节的临界时滞与车辆参数(如运行速度、反馈控制增益、导轨参数和悬挂参数)的关系开展研究.建立了磁浮车辆/导轨耦合动力学模型,车辆包含1节车辆和4个磁浮架,考虑车辆的10个自由度,每个磁浮架上包含4个悬浮电磁铁.导轨模拟为一系列简支Bernoulli-Euler梁,采用模态叠加法对导轨振动方程进行求解.采用传统线性电磁力模型实现车辆和轨道的耦合.采用比例-微分控制算法对电磁铁电流进行反馈控制,实现车辆稳定悬浮,并假设时滞均发生在控制环节,且只考虑间隙反馈控制环节的时滞.采用四阶龙格库塔法对耦合系统动力学方程进行求解,编写了数值仿真程序,计算得到车辆导轨耦合系统在考虑间隙反馈控制时滞时的响应.将系统运动发散时的时滞大小视为临界时滞,开展了参数规律影响分析.通过分析,给出了提高时滞条件下车辆稳定性的方法,包括增大导轨的弯曲刚度和阻尼比,减小间隙反馈控制增益并增大速度反馈控制增益,以及增大二系悬挂阻尼.   相似文献   

16.
In this paper, the magnetoelastic coupling effect in an infinite soft ferromagnetic material with a crack is analyzed. The nonlinear effect of magnetic field upon stress and the effect of the deformed crack configuration are taken into consideration. The coupling field is determined in the deformed configuration by regarding the deformed crack as an elliptical cylinder with its geometric coefficients, which are determined from a set of algebraic equations deduced from the displacements. The magnetic and stress fields near the crack tip are discussed for the case where both of the magnetic loading and the mechanical tension are present.  相似文献   

17.
Ding  Kui  Zhu  Quanxin 《Nonlinear dynamics》2020,100(3):2595-2608
Nonlinear Dynamics - This paper is devoted to investigate the issue of fault-tolerant sampled-data control for a class of uncertain fractional-order memristive neural networks with random switching...  相似文献   

18.
Chen  Lijuan  Zhou  Yuan  Yang  Fangyan  Zhong  Shouming  Zhang  Jianwei 《Nonlinear dynamics》2019,98(1):517-537
Nonlinear Dynamics - The parallel and series circuits of a Hewlett–Packard memristor and a capacitor are foundational building blocks for realistic memristive circuits. Due to the...  相似文献   

19.
In this paper, the synchronization for time-delayed complex networks with adaptive coupling weights is studied. A pinning strategy and a local adaptive scheme to determine coupling weights and feedback gains are proposed. It is noted that our control strategies only rely on some local information other than the global information of the whole network. Finally, the developed techniques are applied to two complex networks which are respectively synchronized to an unstable equilibrium point and a chaotic attractor.  相似文献   

20.
This paper presents an electronic circuit able to emulate the behavior of a neural network based on memristive synapses. The latter is built with two flux-controlled floating memristor emulator circuits operating at high frequency and two passive resistors. Synapses are connected in a way that a bridge circuit is obtained, and its dynamical behavioral model is derived from characterizing memristive synapses. Analysis of the memristor characteristics for obtaining a suitable synaptic response is also described. A neural network of one neuron and two inputs is connected using the proposed topology, where synaptic positive and negative weights can easily be reconfigured. The behavior of the proposed artificial neural network based on memristors is verified through MATLAB, HSPICE simulations and experimental results. Synaptic multiplication is performed with positive and negative weights, and its behavior is also demonstrated through experimental results getting 6% of error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号