首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 433 毫秒
1.
含有阻燃组元的可燃制冷剂爆炸极限的研究   总被引:7,自引:1,他引:7  
通过实验研究了R134a、R227ea、R125分别与6种可燃工质混合后,不同混合比时的爆炸极限的变化规律。在此基础上采用分组法建立了对含有阻燃组元的混合工质爆炸极限的估算模型,与文中得到的18组混合工质的爆炸极限实验曲线结合,可计算9种工质组成的多元混合工质的爆炸极限,研究结果可作为评价混合工质爆炸极限的依据。  相似文献   

2.
采用冷冻蚀刻电镜(FE-EM),傅立叶红外光谱(FT-IR)及钙分布测定等研究了高碱度烷基水杨酸钙的老化过程,并探讨了老化机理,老化反应高碱度烷基水杨酸钙胶体粒子变小,胶体中氢氧化钙的相对含量增加,粘度降低,总碱值(TBN)升高;老化后样品的清净性及抗磨性明显提高;水、甲醇及氢氧化钙等影响老化效果。  相似文献   

3.
为了探索整装式液体工质电热化学炮中药室边界形状对燃烧控制的影响,采用数字高速录像系统对等离子体射流在液体工质中的扩展过程进行了测试,研究了不同放电电压、不同喷嘴直径、不同渐扩边界结构下等离子射流与液体工质的相互作用特性.获得了等离子射流在液体工质中扩展形态的时间序列图,处理出不同工况下Taylor空腔扩展的轴向位移与时...  相似文献   

4.
为了解小火箭发射噪声特性及其在喷口外围的声压场分布规律,针对燃气射流产生噪声问题进行了实验研究和数值计算。讨论了超声速射流噪声的3个主要成分(湍流混合噪声、啸音和宽带激波相关噪声)及相关特点,指出它们产生的根本原因是湍流射流的速度扰动。通过分析不同实验测点的射流噪声声压级峰值,得到了燃气射流噪声在轴向和径向上的分布规律,即随着离喷口距离的增大,轴向噪声的衰减程度大于径向。在实验基础上,利用大涡模拟与FW-H(Ffowcs Williams-Hawkings)声学比拟相结合的方法对燃气射流噪声的声学特性进行计算。结果表明,此方法获得的计算结果与实验结果吻合较好,可为进一步研究射流噪声控制提供参考。  相似文献   

5.
输沙量(率)水平分布的非均一性   总被引:13,自引:0,他引:13  
凌裕泉 《实验力学》1994,9(4):352-356
实验表明:输沙率沿风洞实验段横截面的水平分布具有明显的非均一性。其正负距平变幅可达平均值的45-60%。输沙率与有效起沙风成正比关系,其实验式为q=8.95×10(-1)(VL-Vt)(1.9)(g/cm·min),Vt=5.0m/s。与Bagnold,RA理论公式q=8.70×10(-2)(V-Vt)3相比(Vt=4.0m/s),前者计算结果更接近室内外实测值。  相似文献   

6.
实体肿瘤血管具有扩张、扭曲、不规则分支以及分支间连接絮乱等特征. 为了考察这些特征对血液流动的影响,将肿瘤血管简化为垂直相互贯通的微血管网,借助微流体实验装置,以一定浓度的红细胞悬液作为流动介质,研究红细胞在微血管网中的流动和分布特性. 具体实验方案如下:首先,采用软刻蚀技术,在聚二甲基硅氧烷(polydimethylsiloxane, PDMS)上加工出微血管网;然后,采用微注射泵控制微血管网入口处的红细胞悬液流量,使用倒置显微镜和高速摄影系统观察并记录实验过程;最后,通过Matlab 软件包Piv-lab 及高速摄影配套软件对获得的视频图像进行处理,提取红细胞在微血管网中的流动和分布数据. 数据处理结果显示,红细胞在微血管网中的流动和分布特性受悬液内的红细胞压积(hematocit, Hct)的影响. 红细胞随悬液Hct 的不同呈现2 种运动轨迹:一种为仅沿着轴向微管道流动;另一种是从轴向微管道流入并穿过径向微管道,再进入另一侧的轴向微管道. 另外,入口流量相同时,红细胞在微血管网中的流动速度随Hct 变化呈现不同,Hct 为3% 和5% 的红细胞速度要明显高于Hct 为1% 的红细胞速度.   相似文献   

7.
实体肿瘤血管具有扩张、扭曲、不规则分支以及分支间连接絮乱等特征. 为了考察这些特征对血液流动的影响,将肿瘤血管简化为垂直相互贯通的微血管网,借助微流体实验装置,以一定浓度的红细胞悬液作为流动介质,研究红细胞在微血管网中的流动和分布特性. 具体实验方案如下:首先,采用软刻蚀技术,在聚二甲基硅氧烷(polydimethylsiloxane, PDMS)上加工出微血管网;然后,采用微注射泵控制微血管网入口处的红细胞悬液流量,使用倒置显微镜和高速摄影系统观察并记录实验过程;最后,通过Matlab 软件包Piv-lab 及高速摄影配套软件对获得的视频图像进行处理,提取红细胞在微血管网中的流动和分布数据. 数据处理结果显示,红细胞在微血管网中的流动和分布特性受悬液内的红细胞压积(hematocit, Hct)的影响. 红细胞随悬液Hct 的不同呈现2 种运动轨迹:一种为仅沿着轴向微管道流动;另一种是从轴向微管道流入并穿过径向微管道,再进入另一侧的轴向微管道. 另外,入口流量相同时,红细胞在微血管网中的流动速度随Hct 变化呈现不同,Hct 为3% 和5% 的红细胞速度要明显高于Hct 为1% 的红细胞速度.  相似文献   

8.
单柱单锥型液—液旋流分离管内流场的LDV诊断   总被引:2,自引:0,他引:2  
应用二维激光多普勒仪(LDV)对一种单柱单锥型液-液旋流分离管内流场进行了测量,考察了流量、溢流比、压力比和气芯等参数对流场的影响。测量结果表明:切向速度分布呈典型的Rankine涡结构,沿轴向衰减很少,表明所用锥角是合适的;因该旋流管的水力直径较大,切向速度的总体水平较低,由于对了离特性带来了不利影响。此外,没有观察到切向速度分布的的双峰分布现象。轴向速度的总体水平较低,尤其是在锥形管的上游更为  相似文献   

9.
高聚物粘结NTO的研究   总被引:4,自引:0,他引:4  
运用付里叶变换红外,X射线光电子能谱及常规分析手段,研究了NTO(3-硝基-1,2,4-三唑-5-酮)混合炸药粘结界面分子间的相互作用,造型粉的表面性能。结果表明,NTO中唑环上的活泼氢与不同的高聚物形成氢键,高聚物的结构不同,形成的氢键强弱不同。氢键越强,对金属的腐蚀越小。腐蚀所得产物说明对金属腐蚀起主要作用的是NTO中唑环上的活泼氢。它们的氢键强弱次序为NTO/PU>NTO/F246G>NTO/F2311>NTO/PVB>NTO/AS>NTO/PS。通过运用NTO的饱和水溶液作为水浆液的载体,克服了由于NTO部分溶于水而难于运用水悬浮法生产造型粉的工艺难题。  相似文献   

10.
高速钢球对水介质侵彻时瞬时空腔形成的数值模拟   总被引:4,自引:1,他引:4  
安波  蒋建伟 《爆炸与冲击》1998,18(3):245-250
采用二维有限差分非线性动力数值计算程序(Autodyn-2D)对高速钢球侵彻水介质时瞬时空腔的形成及其发展过程进行了数值模拟,获得了钢球侵彻水介质过程中速度衰减的规律、水介质中速度场和压力场的分布等数值模拟结果。数值模拟的结果与实验结果及现象相符。数值模拟结果及其相关分析为从理论上深入分析研究高速投射物对生物的致伤机理提供了重要的依据。  相似文献   

11.
The nonazeotropic binary mixtures such as, methanol/water, ethanol/water and ammonia/water, have variable boiling and dew points, depending on the combination of substance and those mass fraction. It is expected to have a higher performance as a result of decreasing the thermodynamically irreversible loss, when there is a relevant mass fraction. Therefore, ammonia/water mixture is expected to use as working fluid in small temperature difference power generation cycles and absorption refrigeration cycles. However, few experiments were carried out for measuring heat transfer coefficient for ammonia/water mixture in the world. An experimental study has been carried out to measure boiling heat transfer coefficient of an ammonia/water mixture on a horizontal heated surface at low pressure of 0.2, 0.4 and 0.7 MPa and at low mass fraction of 0 < C < 0.27 and at high pressure 0.7, 1.0 and 1.5 MPa and at mass fraction of 0.5 < C < 1.0 and at heat flux under critical heat flux the heat transfer coefficient are compared with existing correlations prediction and a revised correlation can be proposed to predict them well.  相似文献   

12.
An effective thermal spreader can achieve uniform heat flux distribution and thus enhance heat dissipation of heat sinks. Flat plate heat pipe is one of the highly effective thermal spreaders. Magnetic fluid is liquid and can be moved by the force of magnetic field. Therefore, the magnetic fluid is suitable to be used as the working fluid of flat plate heat pipes which have a very small gap between evaporation and condensation surfaces. We prepared a disk-shaped wickless flat plate heat pipe, and the distance between evaporation and condensation surfaces is only 1 mm. From experimental study, the effect of heat flux and working fluid ratio on the performance of flat plate heat pipe is presented. Also we compared the experimental results between the performance of water and magnetic fluid as working fluids.  相似文献   

13.
Loop heat pipes are heat transfer devices whose operating principle is based on the evaporation and condensation of a working fluid, and which use the capillary pumping forces to ensure the fluid circulation. A series of tests have been carried out with a miniature loop heat pipe (mLHP) with flat evaporator and fin-and-tube type condenser. The loop is made of pure copper with stainless mesh wick and methanol as the working fluid. Detailed study is conducted on the start-up reliability of the mLHP at high as well as low heat loads. During the testing of mLHP under step power cycles, the thermal response presented by the loop to achieve steady state is very short. At low heat loads, temperature oscillations are observed throughout the loop. The amplitudes and frequencies of these fluctuations are large at evaporator wall and evaporator inlet. It is expected that the extent and nature of the oscillations occurrence is dependent on the thermal and hydrodynamic conditions inside the compensation chamber. The thermal resistance of the mLHP lies between 0.29 and 3.2°C/W. The effects of different liquid charging ratios and the tilt angles to the start-up and the temperature oscillation are studied in detail.  相似文献   

14.
Distilled water and nitrogen gas used as the working fluids flow through the stainless steel microtube with inner diameter 168 μm outer diameter 406 μm. Using the Joule heating, the wall temperature field photos of the microtube is acquired by employing an IR camera and the temperature and the volume flow rate of the inlet and the outlet of microtube are measured. A correlation between the axial wall heat conduction and the convective heat transfer is obtained by theoretical analysis based on the experimental results. The investigative results clearly show that the axial heat conduction can reduce the convective heat transfer in the stainless steel microtube and the decrement may reach 2% compared to the convective heat transfer when the working fluid is nitrogen gas, however, the decrement can be neglected for distilled water as the working fluid.  相似文献   

15.
The effects of axial heat conduction in the solid walls of microchannels of circular cross-sections are analyzed here. A systematic approach is adopted, with the aim of pointing out the influence of geometrical parameters and of solid wall thermal conductivity on microchannel heat transfer. The reliability of a commonly adopted criterium, based on the so-called axial conduction number, to assess the relevance of axial heat conduction is also discussed. Numerical simulations concern the simultaneously developing laminar flow of a constant property fluid in microchannels of different length, wall thickness and wall material, heated with a uniform heat flux at the outer surface, for different values of the Reynolds number. Moreover, since often in experimental tests the two end sections of the microchannel wall are not perfectly insulated, the effects of heat losses through these sections are also considered. A hybrid finite element procedure, which implies the step-by-step solution of the parabolized momentum equations in the fluid domain, followed by the solution of the energy equation in the entire domain, corresponding to both the solid and the fluid parts, is used for the numerical simulations.  相似文献   

16.
One of the criteria for evaluating the performance of a heat exchanger with extended surfaces is the pumping power required for a specified heat duty. The results of an experimental project to relate the pumping power to heat transfer augmentation in a double-pipe heat exchanger are reported. The inner, electrically heated pipe was provided with external, rectangular, axial extended surfaces with interruptions. Heat transfer augmentation and friction factors were determined for different configurations with air as the fluid. Starting with continuous fins, cuts were introduced in the fins to give four ratios of the finssegment length to the gap between the segments, and finally all the fins were removed, which resulted in smooth pipes. Five different mass flow rates in two different inner pipes were employed. Lengths, surface areas, and pumping powers for finned pipes are compared with those for smooth pipes. The average heat transfer coefficient increases with an increase in the frequency of the interruptions. For equal heat transfer rates a significant reduction in the lengths can be achieved by interrupted fins. In many cases the reduction in the length is also accompanied by a reduction in the pumping power.  相似文献   

17.
This paper deals with the performance characterization of heat pipes using an aqueous solution of long chain alcohols like n-Butanol, n-Pentanol, n-Hexanol and n-Heptanol as working mediums. These solutions are called as self-rewetting fluids, since these fluid mixtures possess a non-linear dependence of the surface tension with temperature. A cylindrical heat pipe made up of copper with two layers of wrapped screen is used as a wick material and partially filled with the self-rewetting fluid water mixture and tested for its heat transport capability like thermal efficiency and thermal resistance at different inclinations and input power levels. A number of tests have been performed with heat pipes, filled with various aqueous solutions of alcohols with a concentration of 2?ml/l in de-ionized water (DI water) on volume basis. The results obtained for heat pipes using self rewetting fluids show improved performances, when compared to DI water heat pipes.  相似文献   

18.
Experimental investigations were carried out to explore the convective heat transfer in micro pin-fins with different aspect ratios, and the influence of heating load on Nusselt numbers in micro pin-fins with liquid water as working fluid were investigated. The mechanism of convective heat transfer in micro pin-fins at different heating load were studied by 3-D numerical investigations, and the relationships of thermal physical properties change, the end wall effect and axial thermal conduction with Nu numbers in micro pin-fins were analysed. It was found that the thickness of boundary layer was decreased as much as 33.3 % attributed to the destructive effect of thermal physical properties change, and convective heat transfer in the micro pin-fin channel was more than 20 % enhanced by the flow disturbance caused by the increase of temperature difference. The discrepancy of Nu in micro pin-fin channel with different aspect ratios reached 34.59 %, and this discrepancy was reduced by the increase of heating load. The maximum value of impact factors of dynamic viscosity and thermal conductivity on the Nu in micro-pin-fins reached 25.02 and 7.68 %, respectively.  相似文献   

19.
In this study, nanofluids with different TiO2 nanoparticle concentrations were synthesized and measured in different constant heat fluxes for their heat transfer behavior upon flowing through a vertical pipe. Addition of nanoparticles into the base fluid enhances the forced convective heat transfer coefficient. The results show that the enhancement of the convective heat transfer coefficient in the mixture consisting of ethylene glycol and distilled water is more than distilled water as a base fluid.  相似文献   

20.
Two-dimensional (circumferential and axial) wall temperature distributions were measured for top-heated coolant channels with internal geometries that include smooth walls, spiral fins and both twisted tape and spiral fins. Freon-71 was the working fluid. The flow regimes studied were single-phase, subcooled flow boiling, and stratified flow boiling. The inside diameter of all test sections was near 10.0 mm. Circumferentially averaged heat transfer coefficients at several axial locations were obtained for selected coolant channels for a volumetric flow rate of 4.738 x 10−5m3/s, 0.19 MPa (absolute) exit pressure, and 22.2°C inlet subcooling. Overall (averaged over the entire channel) heat transfer coefficients were compared for the various channel geometries. This comparison showed that the channel with large-pitch spiral fins had higher heat transfer coefficients at all power levels. However, the results appear to indicate that if the twist ratio (ratio of the twisted tape period to the inside diameter) is decreased, the configuration employing both fins and a twisted tape will have had greater enhancements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号