首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 342 毫秒
1.
针对波状基底上含不溶性活性剂液滴的铺展过程,引入受活性剂浓度影响的分离压模型,应用润滑理论建立了液滴高度和活性剂浓度演化方程组,通过数值计算方法得到了分离压作用下含活性剂液滴过程的演化特征. 研究表明:分离压作用下的液滴演化时间显著缩短,铺展速率加快,铺展前沿处衍生出的子波结构明显减少,铺展更加稳定;分离压对液滴铺展稳定性的影响与活性剂关联强度密切相关,减小引力强度系数α1有利于促进液滴的铺展,而减小斥力强度系数α2则起抑制作用,且放大了液滴的演化扰动能量,致使液滴铺展呈现不稳定特征;增加基底高度D或波数k均使液滴铺展速率减慢.   相似文献   

2.
绕振荡水翼流动及其转捩特性的数值计算研究   总被引:1,自引:0,他引:1  
吴钦  王国玉  黄彪 《力学学报》2014,46(1):60-69
通过对比标准k-ω SST 湍流模型和基于标准k-ω SST 湍流模型修正的γ-Reθ 转捩湍流模型对绕振荡NACA66 水翼流动的数值计算结果与实验结果,对水翼振荡过程的水动力特性和流场结构变化进行了分析研究. 结果表明:与标准k-ω SST 湍流模型的数值计算结果相比,基于标准k-ω SST 湍流模型修正的γ-Reθ 转捩湍流模型能有效预测绕振荡翼型流场结构和水动力特性,捕捉流场边界层发生的流动分离和转捩现象;绕振荡水翼的流动过程可分为5 个特征阶段,当来流攻角较小时,在水翼前缘发生层流向湍流的转捩现象,水翼动力特征曲线出现变化拐点;随着来流攻角的增大,顺时针尾缘涡逐渐形成并向水翼前缘发展;当攻角较大时,前缘涡分离导致动力失速,水翼的动力特征曲线出现大幅波动;水翼处于顺时针向下旋转阶段,绕水翼的流动状态逐渐由湍流过渡为层流.   相似文献   

3.
林其文 《爆炸与冲击》2002,22(4):289-294
利用小扰动分析法 ,导出不可压缩球壳结构的馈通增长方程 ,数值模拟了高压气体驱动外表面有初始扰动的明胶球壳的瑞利 泰勒不稳定性模型。计算结果表明 :对于低波数扰动 ,外界面比较稳定 ,内表面的馈通增长较快 ,具有比较明显的三个演化阶段和波形反转现象。高波数扰动的增长恰好与低波数相反。球壳会聚结构比柱壳会聚结构的界面稳定性要好些。  相似文献   

4.
采用FTM研究了两相流体界面中的K-H不稳定性,分析了初始振幅、波数、表面张力、密度比、速度梯度、韦伯数We对K-H不稳定性发展的影响。结果表明:增大初始扰动对K-H不稳定性具有促进作用,扰动越强,K-H波浪翻卷高度越高;波数的增加能加快K-H不稳定性的衍化过程,但对K-H波浪高度的发展影响较小;减小表面张力或密度比都能使不稳定性的发展速度增加;初始速度梯度对不稳定性的发展有较大影响,梯度越大,K-H波浪翻卷高度越高;We对K-H波浪的对称性影响较大,We越小,对称程度越高。  相似文献   

5.
粘性可压混合层时间稳定性对称紧致差分求解   总被引:2,自引:0,他引:2  
基于可压扰动方程组的一阶改型 ,将高精度对称紧致格式引入边值法数值线性稳定性分析。对所获非线性离散特征值问题给出了一个通用形式二阶迭代局部算法 ,实现了时间模式和空间模式的统一求解 ,并将扰动特征值及其特征函数同时得到。据此分析了可压平面自由混合层时间稳定性 ,涉及二维 /三维扰动波、粘性 /无粘扰动波、第一 /第二模态、特征函数、伪特征值谱等。研究表明 ,压缩性效应和粘性效应对最不稳定扰动波数和增长率呈相似的减抑作用 ;在 Mc=1附近 ,从高波数段开始 ,粘性效应可强化二维不稳定扰动波由第一模态向第二模态的过渡  相似文献   

6.
使用界面跟踪法FTM(Front Tracking Method)对二维不混溶、不可压缩流体的K-H(Kelvin-Helmholtz)不稳定性进行数值模拟。研究表明,速度梯度层越厚,界面在水平分量中移动越快,卷起越少;初始水平速度差越大,界面卷起越多,内扰动增长速度越快,K-H不稳定性的特征形式更加明显;此外,在Neumann边界条件(即无滑移边界条件)下界面的扰动发展得比Dirichlet边界条件(即对称边界条件)下的扰动快。由于Dirichlet边界中的边界层,在开始时刻涡量扩展到两侧,影响了K-H不稳定性的生长速率;而在Neumann边界条件下涡量由于初始水平速度差,在界面中心聚集。最后,研究了不同边界条件下各种理查德森数对K-H不稳定性的影响。  相似文献   

7.
使用界面跟踪法FTM(Front Tracking Method)对二维不混溶、不可压缩流体的K-H(Kelvin-Helmholtz)不稳定性进行数值模拟。研究表明,速度梯度层越厚,界面在水平分量中移动越快,卷起越少;初始水平速度差越大,界面卷起越多,内扰动增长速度越快,K-H不稳定性的特征形式更加明显;此外,在Neumann边界条件(即无滑移边界条件)下界面的扰动发展得比Dirichlet边界条件(即对称边界条件)下的扰动快。由于Dirichlet边界中的边界层,在开始时刻涡量扩展到两侧,影响了K-H不稳定性的生长速率;而在Neumann边界条件下涡量由于初始水平速度差,在界面中心聚集。最后,研究了不同边界条件下各种理查德森数对K-H不稳定性的影响。  相似文献   

8.
超声速边界层/混合层组合流动的稳定性分析   总被引:1,自引:0,他引:1  
利用可压缩线性稳定性理论研究了超声速混合层考虑壁面影响流动时的失稳特性. 基本流场选取了具有不同速度特征的2 股均匀来流,进入存在上下壁面的流道中. 混合层与边界层的距离为1~3 个边界层厚度,其中壁面取为绝热壁. 分析了该流动在超声速情况下的稳定性特征,同时还讨论了不同波角下的三维扰动波的演化特点,并与二维扰动波进行了比较和分析. 研究结果表明,在此流动情况下,边界层流动和混合层流动的稳定性特征同时存在,并互有影响,其流动稳定性特征既有别于单纯的平板边界层,也有别于单纯的平面混合层,呈现出了新的稳定性特征.   相似文献   

9.
利用可压缩线性稳定性理论研究了超声速混合层考虑壁面影响流动时的失稳特性. 基本流场选取了具有不同速度特征的2 股均匀来流,进入存在上下壁面的流道中. 混合层与边界层的距离为1~3 个边界层厚度,其中壁面取为绝热壁. 分析了该流动在超声速情况下的稳定性特征,同时还讨论了不同波角下的三维扰动波的演化特点,并与二维扰动波进行了比较和分析. 研究结果表明,在此流动情况下,边界层流动和混合层流动的稳定性特征同时存在,并互有影响,其流动稳定性特征既有别于单纯的平板边界层,也有别于单纯的平面混合层,呈现出了新的稳定性特征.  相似文献   

10.
并列双圆柱流致振动的不对称振动和对称性迟滞研究   总被引:2,自引:0,他引:2  
对雷诺数Re = 100 间距比s/D = 2.5 和5.0 的并列双圆柱流致振动进行了数值模拟研究, 其中圆柱质量比m = 2.0, 折合流速Ur 在2.0~10.0 之间, 两圆柱仅能做横流向振动. 研究发现, 当间距比s/D = 2.5 时, 在折合流速4.4 < Ur< 4.8区间内, 两圆柱流致振动响应出现不对称振动现象, 在折合流速4.4 < Ur< 4.8 区间内, 两圆柱流致振动响应出现对称性迟滞现象; 而当间距比s/D = 2.5时, 圆柱流致振动响应与单圆柱涡激振动响应相似, 没有出现不对称振动和对称性迟滞现象. 在不对称振动区间内, 两圆柱的升、阻力参数也出现了不相等的情况. 此外, 当两圆柱不对称振动时, 圆柱间隙流稳定地偏斜向其中的一个圆柱; 相应地, 尾涡也出现了宽窄不等的模式. 窄尾流圆柱的振幅和升、阻力均较宽尾流圆柱的大. 通过对比不对称振动现象发生前后的尾涡模式, 对新现象的产生机制进行了阐述.   相似文献   

11.
Symmetric perturbations imposed on cylinder wakes may result in a modification of the vortex shedding mode from its natural antisymmetric, or alternating, to a symmetric one where twin vortices are simultaneously shed from both sides of the cylinder. In this paper, the symmetric mode in the wake of a circular cylinder is induced by periodic perturbations imposed on the in-flow velocity. The wake field is examined by PIV and LDV for Reynolds numbers about 1200 and for a range of perturbation frequencies between three and four times the natural shedding frequency of the unperturbed wake. In this range, a strong competition between symmetric and antisymmetric vortex shedding occurs for the perturbation amplitudes employed. The results show that symmetric formation of twin vortices occurs close to the cylinder synchronized with the oscillatory component of the flow. The symmetric mode rapidly breaks down and gives rise to an antisymmetric arrangement of vortex structures further downstream. The downstream wake may or may not be phase-locked to the imposed oscillation. The number of cycles for which the symmetric vortices persist in the near wake is a probabilistic function of the perturbation frequency and amplitude. Finally, it is shown that symmetric shedding is associated with positive energy transfer from the fluid to the cylinder due to the fluctuating drag.  相似文献   

12.
The response of the boundary layer on a plate with a blunt leading edge to frozen-in vortex perturbations whose vorticity is normal to the plate surface is found. It is shown that these vortices generate an inhomogeneity of the streamwise velocity component in the boundary layer. This inhomogeneity is analogous to the streaky structure developing as the degree of free-stream turbulence increases. The dependence of the amplitude and shape of the boundary layer inhomogeneity on the distance from the leading edge, the streamwise and spanwise scales, and other parameters is found for periodic and local initial perturbations. It is shown that the receptivity of the boundary layer decreases with increase in the frequency and with decrease in the streamwise perturbation scale.  相似文献   

13.
Numerical experiments are conducted to investigate spatially developing Görtler vortices and the way in which wall roughness promotes their formation and growth. Several different types of walls are examined and their relative merits as vortex promoters assessed. The only disturbances of the flow are due to the rough wall; hence, at each downstream station the local field feels (1) the upstream flow distribution (produced by the upstream wall conditions) and (2) the local forcing at the wall. Rapid vortex formation and growth, like in the case of ribleted walls, can be qualitatively explained by the positive combination of these two effects; when the two influences on the local flow field compete, e.g. for randomly distributed wall roughness, the equations with the boundary conditions filter the disturbances over some streamwise length, function of the roughness amplitude, to create coherent patches of vorticity out of the random noise. These patches can then be amplified by the instability mechanism. If a thin rough strip is aligned along the span of an otherwise smooth wall to trip the boundary layer, the filtering region is shorter and growth of the vortices starts earlier. Also for the case of an isolated three-dimensional hump a rapid disturbance amplification is produced, but in this case the vortices remain confined and a very slow spanwise spreading of the perturbation occurs. In all naturally developing cases, where no specific wavelengths are explicity favored, the average spanwise wavelengths computed are very close to those of largest growth from the linear stability theory.  相似文献   

14.
An experimental and numerical study of the three-dimensional transition of plane wakes and shear layers behind a flat plate is presented. Flow visualization techniques are used to monitor the response of laminar flows at moderate Reynolds numbers (≈100) to perturbations periodically distributed along the span. In this way, the formation and evolution of streamwise vortex tubes and their interaction with the spanwise vortices are analyzed. The flow was studied numerically by means of three-dimensional inviscid vortex dynamics. Assuming periodicity in the spanwise and the streamwise direction, we discretize the vorticity field into two layers of vortex filaments with finite core diameter. Comparison between experiment and visualization indicates that important features of the three-dimensional evolution can be reproduced by inviscid vortex dynamics. Vortex stretching in the strain field of the spanwise rollers appears to be the primary mechanism for the three-dimensional transition in this type of flows.  相似文献   

15.
The unsteady interaction of plane-channel wall boundary layers with a supersonic inviscid flow is investigated. The flow regimes in which disturbances introduced by the boundary layer developing on one wall influence the boundary layer on the other wall are considered. The regime of relatively large pressure disturbance amplitudes generated near the nozzle outlet or by deforming the channel walls is studied. In these conditions, the interaction process is described by a system of Burgers equations with retarded arguments. Numerical solutions of this system are obtained for symmetric and antisymmetric perturbations of the channel walls.  相似文献   

16.
The upstream perturbations that maximise the spatial energy growth in a boundary layer are called optimal perturbations. The optimal perturbations correspond to streamwise vortices and the downstream response corresponds to streamwise streaks.The aim of the present paper is to find a control by blowing and suction at the wall that zeros the energy of perturbation, when the initial disturbance is itself optimal. We shall also address the question: which kind of blowing and suction at the wall is most effective in controlling optimal disturbances?The problem is examined by a method of receptivity analysis based on a numerical solution of a system of equations adjoint to the linearised boundary layer equations. We shall investigate both cases of a flat and a concave wall.  相似文献   

17.
We study within the framework of linear theory the stability of plane-parallel flows of a viscous, electrically conducting fluid in a transverse magnetic field. The magnetic Reynolds numbers are assumed small. The critical Reynolds number as a function of the Hartmann number is obtained over the entire range of variation of the latter. The small perturbation spectrum is studied in detail on the example of Hartmann flow. Neutral curves are constructed for symmetric and antisymmetric disturbances. The destablizing effect of a magnetic field is studied in the case of modified Couette flow. The results obtained agree with the calculations of Lock and Kakutani (where they meet) and are at variance with the results of Pavlov.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 11, No. 3, pp. 127–131, May–June, 1970.The authors wish to thank M. A. Gol'dshtik for his interest in this study.  相似文献   

18.
The 3D receptivity of 2D laminar boundary layers to localized surface vibrations has been investigated both experimentally and theoretically for two types of basic flow: (i) the Blasius boundary layer and (ii) a boundary layer with a negative streamwise pressure gradient (Hartree parameter βH=0.10). For the boundary-layer excitation, a specially designed surface vibrator was used. The development of the excited wave-trains was measured by means of hot-wire anemometry and decomposed into oblique normal Tollmien–Schlichting-modes. The initial spectra of the excited perturbations at the position of the vibrator was obtained by two different techniques. The first used an additional source which was mounted upstream and provided the amplification curves for the instability modes in the vicinity of the vibrator, the second was based on linear stability calculations. The receptivity coefficients were defined as the ratio of the initial wavenumber spectrum of the excited TS-waves and the corresponding resonant spectrum of the surface vibrations. They were determined for each fixed frequency as a function of the spanwise wavenumber.The boundary value problem for the disturbance produced by the vibrating membrane was solved theoretically for the same conditions as in the experiments in the framework of the classical hydrodynamic stability theory. The Navier–Stokes equations were linearized around a incompressible basic flow described by a solution of the Falkner–Skan equation. Comparisons of the theoretical and experimental results on the 3D receptivity show good quantitative agreement. It is concluded that the favorable pressure gradient increases the boundary-layer receptivity to surface vibrations.  相似文献   

19.
Two dimensional time accurate PIV measurements of the flow between pressure and suction side at different spanwise positions of a rotating channel are presented. The Reynolds and Rotation numbers are representative for the flow in radial impellers of micro gas turbines. Superposition of the 2D results at the different spanwise positions provides a quasi-3D view of the flow and illustrates the impact of Coriolis forces on the 3D flow structure. It is shown that the inlet flow is little affected by rotation. An increasing/decreasing boundary layer thickness is reported on the suction/pressure side wall halfway between the channel inlet and outlet. The turbulence intensity moves away from the suction side wall and remains close to the pressure side wall. The instantaneous measurements at mid-height of the rotating channel reveal the presence of hairpin vortices in the pressure side boundary layer and symmetric vortices near the suction side. Hairpin vortices occur in rotation in the pressure and in the suction side, for the measurement plane close to the channel bottom wall.  相似文献   

20.
The evolution of low-speed streaks in the turbulent boundary layer of the minimum channel flow unit at a low Reynolds number is simulated by the direct numer- ical simulation (DNS) based on the standard Fourier-Chebyshev spectral method. The subharmonic sinuous (SS) mode for two spanwise-aligned low-speed streaks is excited by imposing the initial perturbations. The possibilities and the physical realities of the turbulent sustaining in the minimal channel unit are examined. Based on such a flow field environment, the evolution of the low-speed streaks during a cycle of turbulent sus- taining, including lift-up, oscillation, and breakdown, is investigated. The development of streamwise vortices and the dynamics of vortex structures are examined. The results show that the vortices generated from the same streak are staggered along the streamwise direction, while the vortices induced by different streaks tilt toward the normal direction due to the mutual induction effect. It is the spatial variations of the streamwise vortices that cause the lift-up of the streaks. By resolving the transport dynamics of enstrophy, the strength of the vortices is found to continuously grow in the logarithmic layer through the vortex stretching mechanism during the evolution of streaks. The enhancement of the vortices contributes to the spanwise oscillation and the following breakdown of the low-speed streaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号