首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
In this paper, we employ nonpolynomial spline (NPS) basis functions to obtain approximate solutions of the regularized long wave (RLW) equation. By considering suitable relevant parameters, it is shown that the local truncation error behaves O(k 2+h 2) with respect to the time and space discretization. Numerical stability of the method is investigated by using a linearized stability analysis. To illustrate the applicability and efficiency of the aforementioned basis, we compare obtained numerical results with other existing recent methods. Motion of single solitary wave and double and triple solitary waves, wave undulation, generation of solitary waves using the Maxwellian initial condition and conservation properties of mass, energy, and momentum of numerical solutions of the equation are dealt with.  相似文献   

2.
In this paper, we implement some fast and high accuracy numerical algorithms to obtain the solitary wave solutions of generalized Pochhammer?CChree (PC) and regularized long wave (RLW) equations. We employ the discrete Fourier transform to discretize the original partial differential equations (PDEs) in space and obtain a system of ordinary differential equations (ODEs) in Fourier space which will be solved with fourth order time-stepping methods. The proposed methods are fast and accurate due to the use of the fast Fourier transform in combination with explicit fourth-order time stepping methods. For RLW equation we investigate the propagation of a single solitary and interaction of two and three solitary waves. Moreover, three invariants of motion (mass, energy, and momentum) are evaluated to determine the conservation properties of the problem, and the numerical schemes lead to accurate results. The numerical results are compared with analytical solutions and with those of other recently published methods to confirm the accuracy and efficiency of the presented schemes.  相似文献   

3.
Interfacial symmetric solitary waves propagating horizontally in a three-layer fluid with constant density of each layer are investigated. A fully nonlinear numerical scheme based on integral equations is presented. The method allows for steep and overhanging waves. Equations for three-layer conjugate flows and integral properties like mass, momentum and kinetic energy are derived in parallel. In three-layer fluids the wave amplitude becomes larger than in corresponding two-layer fluids where the thickness of a pycnocline is neglected, while the opposite is true for the propagation velocity. Waves of limiting form are particularly investigated. Extreme overhanging solitary waves of elevation are found in three-layer fluids with large density differences and a thick upper layer. Surprisingly we find that the limiting waves of depression are always broad and flat, satisfying the conjugate flow equations. Mode-two waves, obtained with a periodic version of the numerical method, are accompanied by a train of small mode-one waves. Large amplitude mode-two waves, obtained with the full method, are close to one of the conjugate flow solutions.  相似文献   

4.
In this paper, we consider the higher order Boussinesq (HBq) equation which models the bi-directional propagation of longitudinal waves in various continuous media. The equation contains the higher order effects of frequency dispersion. The present study is devoted to the numerical investigation of the HBq equation. For this aim a numerical scheme combining the Fourier pseudo-spectral method in space and a Runge–Kutta method in time is constructed. The convergence of semi-discrete scheme is proved in an appropriate Sobolev space. To investigate the higher order dispersive effects and nonlinear effects on the solutions of HBq equation, propagation of single solitary wave, head-on collision of solitary waves and blow-up solutions are considered.  相似文献   

5.
In this paper, the propagation of Rayleigh waves in orthotropic non-viscous fluid-saturated porous half-spaces with sealed surface-pores and with impervious surface is investigated. The main aim of the investigation is to derive explicit secular equations and based on them to examine the effect of the material parameters and the boundary conditions on the propagation of Rayleigh waves. By employing the method of polarization vector the explicit secular equations have been derived. These equations recover the ones corresponding to Rayleigh waves propagating in purely elastic half-spaces. It is shown from numerical examples that the Rayleigh wave velocity depends strongly on the porosity, the elastic constants, the anisotropy, the boundary conditions and it differs considerably from the one corresponding to purely elastic half-spaces. Remarkably, in the fluid saturated porous half-spaces, Rayleigh waves may travel with a larger velocity than that of the shear wave, a fact that is impossible for the purely elastic half-spaces.  相似文献   

6.
An examination of solitary waves in 3D, time‐dependant hydrostatic and Boussinesq numerical models is presented. It is shown that waves in these models will deform and that only the acceleration term in the vertical momentum equation need be included to correct the wave propagation. Modelling of solitary waves propagating near the surface of a small to medium body of water, such as a lake, are used to illustrate the results. The results are also compared with experiments performed by other authors. Then as an improvement, an alternative numerical scheme is used which includes only the vertical acceleration term. Effects of horizontal and vertical diffusion on soliton wave structure is also discussed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
The problem of nonlinear wave dynamics of a fluid-saturated porous medium is investigated. The mathematical model proposed is based on the classical Frenkel--Biot--Nikolaevskiy theory concerning elastic wave propagation and includes mass, momentum, energy conservation laws, as well as rheological and thermodynamic relations. The model describes nonlinear, dispersive, and dissipative medium. To solve the system of differential equations, an asymptotic modified two-scales method is developed and a Cauchy problem for initial equations system is transformed to a Cauchy problem for nonlinear generalized Korteweg--de Vries--Burgers equation for modulated quick wave amplitudes and an inhomogeneous set of equations for slow background motion. Stationary solutions of the derived evolutionary equation that have been constructed numerically reflect different regimes of elastic wave attenuation: diffusive, oscillating, and soliton-like.  相似文献   

8.
We study nonlinear orbital stability and instability of the set of ground state solitary wave solutions of a one-dimensional Boussinesq equation or one-dimensional Benney–Luke equation. It is shown that a solitary wave (traveling wave with finite energy) may be orbitally stable or unstable depending on the range of the wave's speed of propagation.  相似文献   

9.
万德成 《力学季刊》2000,21(4):401-408
本文以完整二维Navier-Stokes方程为控制方程,采用VOF界面跟踪技术和差分方法,数值计算孤立波与多个淹没水下物体相互作用的问题。本文对潜水物体的高度接近水深时,孤立波通过水下孤立直立方柱、两个间距较大的水下直立方柱和两个间距较小的水下直立方柱等三种情况分别进行了计算,给出了波形随时间的演化图,可以看到反射波、前传波和跟随振荡型小波列的生成。对孤立波通过水下孤立直立方柱情形的计算结果,与实验结果和势流理论结果进行了比较。  相似文献   

10.
王贺  吴卫  刘桦 《力学季刊》2015,36(1):26
基于RANS方程、VOF方法以及修正的Goring造波方法建立了模拟活塞式推波板运动的二维数值波浪水槽,实现了双孤立波直墙爬高的数值模拟.利用动边界技术模拟造波机推波板的运动,有效地实现了不同波峰间距双孤立波的造波方法.在验证单孤立波直墙爬高的基础上,模拟了不同相对波高、相对波峰间距的等波高双孤立波的直墙爬高过程,给出了波面、速度场及波动能量的变化规律.数值模拟结果表明:对于等波高的双孤立波,当入射波波高较大及两个波峰间距相对较小时,跟随在后孤立波的爬高放大系数小于先导孤立波的爬高放大系数;双孤立波在直墙爬高过程中,波动场的势能时间过程线呈现三峰形态,其中居中的最大势能峰值出现在第二个孤立波与经直墙反射后反向传播的第一个孤立波完全对撞的时刻.  相似文献   

11.
We consider herein the Ostrovsky equation which arises in modeling the propagation of the surface and internal solitary waves in shallow water, or the capillary waves in a plasma with the effects of rotation. Using the modified sliding method, we prove that the solitary wave moving to the left to the Ostrovsky equation is symmetric about the origin and unique up to translations. We also establish the regularity and decay properties of solitary waves and obtain some results of the nonexistence of solitary wave solutions depending on the wave speed, weak rotation, and dispersive parameter.  相似文献   

12.
将两个不同的、考虑波流相互作用和能量耗散项的、依赖时间变化的双曲型缓坡方程分别化 为一组等价的控制方程组,具体分析了底摩阻项对相对频率和波数矢的影响,从而选择了合 适的数学模型. 将所选择的缓坡方程化为依赖时间变化的抛物型方程,并用ADI法进 行数值求解,建立了缓变水深水域非均匀水流中波浪传播的数值模拟模型. 通过和波流共线 的解析解的比较,说明数值解和解析解相一致. 结合Arthur(1950)水流这一经典算例,定 量地讨论了考虑联合折射-绕射作用后的波数和仅考虑折射作用的波数的差别及其对波高分 布的影响. 在基本同样的条件下, 本文的数值解与他人的计算结果一致.  相似文献   

13.
We continue work by the second author and co-workers onsolitary wave solutions of nonlinear beam equations and their stabilityand interaction properties. The equations are partial differentialequations that are fourth-order in space and second-order in time.First, we highlight similarities between the intricate structure ofsolitary wave solutions for two different nonlinearities; apiecewise-linear term versus an exponential approximation to thisnonlinearity which was shown in earlier work to possess remarkablystable solitary waves. Second, we compare two different numericalmethods for solving the time dependent problem. One uses a fixed griddiscretization and the other a moving mesh method. We use these methodsto shed light on the nonlinear dynamics of the solitary waves. Earlywork has reported how even quite complex solitary waves appear stable,and that stable waves appear to interact like solitons. Here we show twofurther effects. The first effect is that large complex waves can, as aresult of roundoff error, spontaneously decompose into two simplerwaves, a process we call fission. The second is the fusion of twostable waves into another plus a small amount of radiation.  相似文献   

14.
研究了埋置于弹性地基内充液压力管道中非线性波的传播. 假设管壁是线弹 性的,地基反力采用Winkler线性地基模型,管中流体为不可压缩理想流体. 假定系统初始 处于内压为$P_0$的静力平衡状态,动态的位移场及内压和流速的变化是叠加在静 力平衡状态上的扰动. 基于质量守恒和动量定理,建立了管壁和流体耦合作用的非 线性运动方程组; 进而用约化摄动法, 在长波近似情况下得到了KdV方程,表征 着系统有孤立波解.  相似文献   

15.
Six different models were evaluated for reproducing internal solitary waves which occur and propagate in a stratified flow field with a sharp interface. Three stages were used to compute internal solitary waves in a stratified field: (1) first‐phase computation of momentum equations, (2) second‐phase computation of momentum equations, which corresponds to computing the Poisson's equation, and (3) density computation. The six models discussed in this paper consisted of combinations of four different schemes, a three‐point combined compact difference scheme (CCD), a normal central difference scheme (CDS), a cubic‐polynomial interpolation (CIP), and an exactly conservative semi‐Lagrangian scheme (CIP‐CSL2). The residual cutting method was used to solve the Poisson's equation. Three tests were used to confirm the validity of the computations using KdV theory; i.e. the incremental wave speed and amplitude of internal solitary waves, the maximum horizontal velocity and amplitude, and the wave form. In terms of the shape of an internal solitary wave, using CIP for momentum equations was found to provide better performance than CCD. These results suggest one of the most appropriate scheme for reproducing internal solitary waves may be one in which CIP is used for momentum equations and CCD to solve the Poisson's equation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
The interaction of an accelerating Airy beam and a solitary wave is investigated for integrable and non-integrable equations governing nonlinear optical propagation in various media. For the integrable nonlinear Schrödinger equation, by way of a Bäcklund transformation, we show that no momentum exchange takes place, as the only effect of the interaction is to modulate the amplitude of the solitary wave. The latter result also holds for propagation in anisotropic media with birefringent walkoff and nonlocality, as specifically addressed with reference to uniaxial nematic liquid crystals in the absence of beam curvature. When the wavefront curvature characteristic of accelerating Airy beams is accounted for, both asymptotic and numerical solutions show that a small amount of momentum is initially exchanged, with the solitary wave rapidly settling to a state of constant momentum.  相似文献   

17.
In this paper, based on the equations presented in [2], the head-on collision between two solitary waves described by the modified KdV equation (the mKdV equation, for short) is investigated by using the reductive perturbation method combined with the PLK method. These waves propagate at the interface of a two-fluid system, in which the density ratio of the two fluids equals the square of the depth ratio of the fluids. The second order perturbation solution is obtained. It is found that in the case of disregarding the nonuniform phase shift, the solitary waves preserve their original profiles after collision, which agrees with Fornberg and Whitham's numerical result of overtaking collision161 whereas after considering the nonuniform phase shift, the wave profiles may deform after collision.  相似文献   

18.
Studies on the oblique interactions of weakly nonlinear long waves in dispersive systems are surveyed. We focus mainly our concentration on the two-dimensional interaction between solitary waves. Two-dimensional Benjamin–Ono (2DBO) equation, modified Kadomtsev–Petviashvili (MKP) equation and extended Kadomtsev–Petviashvili (EKP) equation as well as the Kadomtsev–Petviashvili (KP) equation are treated. It turns out that a large-amplitude wave can be generated due to the oblique interaction of two identical solitary waves in the 2DBO and the MKP equations as well as in the KP-II equation. Recent studies on exact solutions of the KP equation are also surveyed briefly.  相似文献   

19.
A nonlinear reaction-diffusion equation is studied numerically by a Petrov-Galerkinfinite element method,which has been proved to be2nd-order accurate in time and4th-orderin space.The comparison between the exact and numerical solutions of progressive wavesshows that this numerical scheme is quite accurate,stable and efficient.It is also shown thatany local disturbance will spread,have a full growth and finally form two progressive wavespropagating in both directions.The shape and the speed of the long term progressive wavesare determined by the system itself,and do not depend on the details of the initial values.  相似文献   

20.
The nonlinear modulation of the interfacial waves of two superposed dielectric fluids with uniform depths and rigid horizontal boundaries, under the influence of constant normal electric fields and uniform horizontal velocities, is investigated using the multiple-time scales method. It is found that the behavior of small perturbations superimposed on traveling wave trains can be described by a nonlinear Schrödinger equation in a frame of reference moving with the group velocity. Wave-like solutions to this equation are examined, and different types of localized excitations (envelope solitary waves) are shown to exist. It is shown that when these perturbations are neutrally stable and sufficiently long, solutions to the nonlinear Schrödinger equation may be approximated by the well-known Korteweg-de Vries equation. The speed of the solitary on the interface is seen to be reduced by the electric field. It is found that there are two critical values of the applied voltage that lead to (i) breaking up of the solitary waves, and (ii) bifurcation of solutions of the governing equations. On the other hand, the complex amplitude of standing wave trains near the marginal state is governed by a similar type of nonlinear Schrödinger equation in which the roles of time and space are interchanged. This equation, under a suitable transformation, is obtained as the Korteweg-de Vries equation with a variable coefficient. It is shown that this type of equations admit a solitary wave type of solutions with variable speed. Using the tangent hyperbolic method, it is observed that the wave speed increases as well as decreases, with the increase of electric field values, according to the chosen wavenumbers range. Finally, the nonlinear stability analysis is discussed in view of the coefficients of nonlinear Schrödinger equation to show the effects of various physical parameters, and also to recover the some limiting cases studied earlier in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号