首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
分形油藏不稳定渗流问题的精确解   总被引:11,自引:1,他引:11  
同登科  葛家理 《力学学报》1998,30(5):621-627
研究了分形油藏无限大地层和有界地层渗流模型,引入了一类有限广义Hankel变换,利用这种变换和Weber变换,在井底定流量和定压生产时,对无限大地层及有界地层(包括封闭和定压地层)六种情况,求得了实空间解析解用双参数(df,ds)来刻画分形油藏的分形特性,分析了分形油藏压力动态特征以及分形参数和边界对压力动态的影响  相似文献   

2.
Acidizing technology has been widely applied when developing naturally fractured–vuggy reservoirs. So testing and evaluating acidizing wells’ pressure behavior become necessary for further improving the wells’ performance. Analyzing transient pressure data can estimate some key reservoir parameters. Generally speaking, carbonate minerals are usually composed of dolomite and calcite which are easy to be dissolved by hydrochloric acid which is often used to react with the rock to create a high conductivity channel, namely wormhole. Pressure transient behavior in fractured–vuggy reservoirs has been studied for many years; however, the models of acidizing wells with wormholes were not reported in previous studies. This article presented an analytical model for wormholes in naturally fractured–vuggy carbonate reservoirs, and wormholes solutions were obtained through point sink integral method. The results were validated accurately by comparing with previous results and numerical simulation. Then in this paper, type curves were established to recognize the flow characteristics, and flow was divided into six flow regimes comprehensively. The calculative results showed that the characteristics of type curves were influenced by inter-porosity flow factor, wormhole number, fluids capacitance coefficient. We also showed that the pressure behavior was affected by the angles between wormholes, and the pressure depletion increased as the angle decreased, because the wormholes were closer, their interaction became stronger. At the end, a reservoir example was showed to demonstrate the methodology of new type curve analysis.  相似文献   

3.
Fractalgeometryisapowerfultooltodescribecomplexphenomenon.Especiallyitisappropriatetoscalethenonuniformityandnonsequenceofporousmedia.Ifthemechanicsoffluidflowthroughporousmediaisstudiedbyusingfractal,thediscernibleandcognitiveabilityforporousmediaan…  相似文献   

4.
The mathematical model for transient fluid flow in porous media is based in general on mass conservation principle. Because of the small compressibility of formation fluid, the quadratic term of pressure gradient is always ignored to linearize the non-linear diffusion equation. This may result in significant errors in model prediction, especially at large time scale. In order to solve this problem, it may be necessary to keep the quadratic term in the non-linear equations. In our study, the quadratic term is reserved to fully describe the transient fluid flow. Based on this rigorous treatment, the mathematical models are established to analyze the transient flow behavior in a double porosity, fractal reservoir with spherical and cylindrical matrix. In addition, Laplace transformation method is employed to solve these mathematical models and the type curves are provided to analyze the pressure transient characteristics. This study indicates that the relative errors in calculated pressure caused by ignoring the quadratic term may amount to 10?% in a fractal reservoir with double porosity, which can??t be neglected in general for fractal reservoirs with double porosity at large time scale.  相似文献   

5.
为了准确模拟致密油藏水平井大规模压裂形成复杂裂缝网络系统和非均质储层井底压力变化,建立考虑诱导缝矩形非均质储层多段压裂水平井不稳定渗流数学模型,耦合裂缝模型与储层模型得到有限导流裂缝拉普拉斯空间井底压力解,对两种非均质储层模型分别利用数值解、边界元和已有模型验证其准确性.基于压力导数曲线特征进行流动阶段划分和参数敏感性分析,得到以下结果:和常规压裂水平井井底压力导数曲线相比较,理想模式下,考虑诱导缝影响时特有的流动阶段是综合线性流阶段、诱导缝向压裂裂缝“补充”阶段、储层线性流动阶段和拟边界控制流阶段.诱导缝条数的增加加剧了综合线性流阶段的持续时间,降低了流体渗流阻力,早期阶段压力曲线越低;当诱导缝与压裂裂缝导流能力一定时,裂缝导流能力越大,线性流持续时间越长;当所有压裂裂缝不在一个区域时,沿井筒方向两端区域低渗透率弱化了低渗区域诱导缝流体向压裂裂缝“补充”阶段,因此,沿井筒方向两端区域渗透率越低,早期阶段压力曲线越高;当所有压裂裂缝在一个区域时,渗透率变化只影响径向流阶段之后压力曲线形态,外区渗透率越低,早期径向流阶段之后压力曲线越高.通过实例验证,表明该模型和方法的实用性和准确性.  相似文献   

6.
Fractures and faults are common features of many well-known reservoirs. They create traps, serve as conduits to oil and gas migration, and can behave as barriers or baffles to fluid flow. Naturally fractured reservoirs consist of fractures in igneous, metamorphic, sedimentary rocks (matrix), and formations. In most sedimentary formations both fractures and matrix contribute to flow and storage, but in igneous and metamorphic rocks only fractures contribute to flow and storage, and the matrix has almost zero permeability and porosity. In this study, we present a mesh-free semianalytical solution for pressure transient behavior in a 2D infinite reservoir containing a network of discrete and/or connected finite- and infinite-conductivity fractures. The proposed solution methodology is based on an analytical-element method and thus can be easily extended to incorporate other reservoir features such as sealing or leaky faults, domains with altered petrophysical properties (for example, fluid permeability or reservoir porosity), and complicated reservoir boundaries. It is shown that the pressure behavior of discretely fractured reservoirs is considerably different from the well-known Warren and Root dual-porosity reservoir model behavior. The pressure behavior of discretely fractured reservoirs shows many different flow regimes depending on fracture distribution, its intensity and conductivity. In some cases, they also exhibit a dual-porosity reservoir model behavior.  相似文献   

7.
We have studied the effect of a constant top pressure on the pressure transient analysis of a partially penetrated well in an infinite-acting fractured reservoir with wellbore storage and skin factor effects. Semi-analytical solutions of a two-dimensional diffusivity equation have been obtained by using successive applications of the Laplace and modified finite Fourier sine transforms. Both pseudo-steady-state and transient exchanges between the matrix and the fractures have been considered. Solutions are presented that can be used to generate type curves for pressure transient analysis or can be used as a forward model in parameter estimation. The presented analysis has applications in well testing of fractured aquifers and naturally fractured oil reservoirs with a gas cap.  相似文献   

8.
Most of the developed models for fractured reservoirs assume ideal matrix block size distribution. This assumption may not be valid in reality for naturally fractured reservoirs and possibly lead to errors in prediction of production from the naturally fractured reservoirs especially during a transient period or early time production from the matrix blocks. In this study, we investigate the effect of variable block size distribution on one- dimensional flow of compressible fluids in fractured reservoirs. The effect of different matrix block size distributions on the single phase matrix-fracture transfer is studied using a recently developed semi-analytical approach. The proposed model is able to simulate fluid exchange between matrix and fracture for continuous or discrete block size distributions using probability density functions or structural information of a fractured formation. The presented semi-analytical model demonstrates a good accuracy compared to the numerical results. There have been recent attempts to consider the effect of variable block size distribution in naturally fractured reservoir modeling for slightly compressible fluids with a constant viscosity and compressibility. The main objective of this study is to consider the effect of variable block size distribution on a one-dimensional matrix-fracture transfer function for single-phase flow of a compressible fluid in fractured porous media. In the proposed semi-analytical model, the pressure variability of viscosity and isothermal compressibility is considered by solving the nonlinear partial differential equation of compressible fluid flow in the fractured media. The closed form solution provided can be applied to flow of compressible fluids with variable matrix block size distribution in naturally fractured gas reservoirs.  相似文献   

9.
Based on Fick’s law in matrix and Darcy flow in cleats and hydraulic fractures, a new semi-analytical model considering the effects of boundary conditions was presented to investigate pressure transient behavior for asymmetrically fractured wells in coal reservoirs. The new model is more accurate than previous model proposed by Anbarci and Ertekin, SPE annual technical conference and exhibition, New Orleans, 27–30 Sept 1998 because new model is expressed in the form of integral expressions and is validated well through numerical simulation. (1) In this paper, the effects of parameters including fracture conductivity, coal reservoir porosity and permeability, fracture asymmetry factor, sorption time constant, fracture half-length, and coalbed methane (CBM) viscosity on bottomhole pressure behavior were discussed in detail. (2) Type curves were established to analyze both transient pressure behavior and flow characteristics in CBM reservoir. According to the characteristics of dimensionless pseudo pressure derivative curves, the process of the flow for fractured CBM wells was divided into six sub-stages. (3) This paper showed the comparison of transient steady state and pseudo steady state models. (4) The effects of parameters including transfer coefficient, wellbore storage coefficient, storage coefficient of cleat, fracture conductivity, fracture asymmetry factor, and rate coefficient on the shape of type curves were also discussed in detail, indicating that it is necessary to keep a bigger fracture conductivity and fracture symmetry for enhancing well production and reducing pressure depletion during the hydraulic fracturing design.  相似文献   

10.
This paper presents the analytical solutions in Laplace domain for two-dimensionalnonsteady flow of slightly compressible liquid in porous media with double porosity by usingthe methods of integral transforms and variables separation.The effects of the ratio ofstorativities ω,interporosity flow parameter λ,on the pressure behaviors for a verticallyfractured well with infinite conductivity are investigated by using the method of numericalinversion.The new log-log diagnosis graph of the pressures is given and analysed.  相似文献   

11.
多层油藏分为层间无窜流的油藏和层间有窜流的油藏。本文研究了层间有弱渗透夹层的两层油藏中两种情形的瞬态渗流,包括单层打开的瞬态渗流和一层注入、一层采出的两层油藏的瞬态渗流。用面积平均方法求出了弱渗透夹层封闭油藏中瞬态渗流的平均压降。分析表明:在渗流前期,层间窜流量逐渐增大,在后期层间窜流量趋于稳定;在单层开采的情况下:初期两层压降不同,非打开层的压降有滞后现象,并且隔层渗透率越小,油井工作强度越弱,滞后时间越长;后期两层压降趋于一致,可以作为一层油藏处理。在一注一采的油藏中,当注采量相同时,两层压降在后期趋于不同的稳定值;当注采量不同时,两层压降在后期趋于一致,但不能达到稳定。  相似文献   

12.
A numerical method as well as a theoretical study of non-Darcy fluid flow through porous and fractured reservoirs is described. The non-Darcy behavior is handled in a three-dimensional, multiphase flow reservoir simulator, while the model formulation incorporates the Forchheimer equation for describing single-phase or multiphase non-Darcy flow and displacement. The non-Darcy flow through a fractured reservoir is handled using a general dual-continuum approach. The numerical scheme has been verified by comparing its results against those of analytical methods. Numerical solutions are used to obtain some insight into the physics of non-Darcy flow and displacement in reservoirs. In addition, several type curves are provided for well-test analyses of non-Darcy flow to demonstrate a methodology for modeling this type of flow in porous and fractured rocks, including flow in petroleum and geothermal reservoirs.  相似文献   

13.
动边界双重介质油藏低速非达西渗流试井模型   总被引:3,自引:2,他引:1  
裂缝性油藏中基质岩块的渗透率一般很低,大量岩心测试实验证实在基质岩块内的液体渗流和在一定含水饱和度下的气体渗流将偏离达西渗流,往往出现低速非达西渗流,表现出启动压力梯度以及流体流动边界不断向外扩展等特殊现象。本文充分考虑启动压力梯度与动边界的影响,建立了微可压缩双重介质油藏低速非达西渗流的试井数学模型,对时间和空间变量...  相似文献   

14.
IntroductionTheflowtheoryanditsapplicationoffluidsflowinafractalreservoirhavecontinuallygonedeepintostudysinceChangandYortsos[1]builttheflowmodeloffluidthroughafractalreservoir.TONGDeng_ke[2 ]presentedtheexactsolutionanditspressurecharacteristicsfortheva…  相似文献   

15.
This article presents the PTA on the multi-stage fractured horizontal well in shale gas reservoirs incorporating desorption and diffusive flow in the matrix. Currently, most PTA models are simply based on Darcy flow both in natural fractures and matrix without considering the mechanisms of desorption and diffusion in shale matrix. Source function and Laplace transform with the numerical discrete method are employed to solve the mathematical model. The solution is presented in the Laplace domain so that the wellbore storage effect and skin factor can be easily incorporated by convolution. Type curves are plotted with Stehfest algorithm and different flow regimes are identified. The presented model could be used to interpret pressure signals more accurately for shale gas reservoirs.  相似文献   

16.
This paper examines the two-phase flow for a horizontal well penetrating a naturally fractured reservoir with edge water injection by means of a fixed streamline model. The mathematical model of the vertical two-dimensional flow or oil-water for a horizontal well in a medium with double-porosity is established, and whose accurate solutions are obtained by using the characteristic method. The saturation distributions in the fractured system and the matrix system as well as the formula of the time of water free production are presented. All these results provide a theoretical basis and a computing method for oil displacement by edge water from naturally fractured reservoirs.  相似文献   

17.
海陆过渡相页岩气藏不稳定渗流数学模型   总被引:1,自引:1,他引:0  
海陆过渡相页岩常与煤层和砂岩呈互层状产出, 储层连续性较差、横向变化快、非均质性强, 水力压裂技术是其获得经济产量的关键手段. 然而, 目前缺乏有效的海陆过渡相页岩气藏不稳定渗流数学模型, 对其渗流特征分析及储层参数评价不利. 针对这一问题, 首先建立海陆过渡相页岩气藏压裂直井渗流数学模型, 其次采用径向复合模型来反映强非均质性, 采用Langmuir等温吸附方程来描述气体的解吸和吸附, 分别采用双重孔隙模型和边界元模型模拟天然裂缝和水力裂缝, 建立并求解径向非均质的页岩气藏压裂直井不稳定渗流数学模型, 分析海陆过渡相页岩气藏不稳定渗流特征, 并进行数值模拟验证和模型分析应用. 分析结果表明, 海陆过渡相页岩气藏不稳定渗流特征包括流动早期阶段、双线性流、线性流、内区径向流、页岩气解吸、内外过渡段、外区径向流及边界控制阶段. 将本模型应用在海陆过渡相页岩气试井过程中, 实际资料拟合效果较好, 其研究成果可为同类页岩气藏的压裂评价提供一些理论支撑, 具有较好应用前景.   相似文献   

18.
向地层注入CO2可以有效地提高致密砂岩原油采收率,常规的试井解释数学模型不能满足致密砂岩无限导流垂直裂缝井CO2混相驱试井解释的需求.因此,基于渗流力学基本原理建立考虑应力敏感影响的无限导流垂直裂缝井CO2混相驱试井解释数学模型,利用Laplace变换、摄动变换和Stehfest数值反演的方法进行求解,编程绘制典型特征曲线并进行敏感性分析.研究表明:该模型典型特征曲线共划分为八个流动阶段.由于应力敏感效应的影响,径向流阶段内、外区压力导数曲线不再是0.5和0.5M13水平线,而是呈“上翘”的曲线,并且应力敏感系数越大,曲线“上翘”越明显;混相区压力导数曲线符合幂律型变化指数规律且高于(1-n)/(3-n)斜率直线;内区、混相区半径和M12的变化都会使得外区压力曲线升高;通过该模型可以有效地对致密砂岩压裂井CO2混相驱试井资料进行解释.  相似文献   

19.
In this work we present a model for radial flow in highly heterogenous porous media. Heterogeneity is modeled by means of fractal geometry, a heterogeneous medium is regarded as fractal if its Hausdorff dimension is non-integral. Our purpose is to present a derivation of the model consistent with continuum mechanics, capable to describe anomalous diffusion as observed in some naturally fractured reservoirs. Consequently, we introduce fractional mass and a generalized Gauss theorem to obtain a continuity equation in fractal media. A generalized Darcy law for flux completes the model. Then we develop the basic equation for Well test analysis as is applied in petroleum engineering. Finally, the equation is solved by Laplace transform and inverted numerically to illustrate anomalous diffusion. In this case by showing that the flow rate from fractal systems is smaller than that from the Euclidean system.  相似文献   

20.
This study aims to correlate the response of pressure transient test to permeability distribution type. For this purpose, correlated permeability distributions in xy direction are generated using fractional Brownian motion (fBm) as it has been shown in literature that permeability in carbonate reservoirs exhibits an fBm type distribution horizontally. 2-D fBm permeability distributions created using mid point displacement method are employed as data to a black oil simulator. The intermittence exponent, H or fractal dimension of the distribution, D, as defined by D=2 – H, characterizes the distribution type. All permeability distributions are normalized to represent the same arithmetic mean (20, 100, and 500 mD) and uniform variance so that only their fractal dimension that underlies the smoothness of the distribution distinguishes them. Many different realizations of permeability distributions are generated based on the random number seeds used and pressure transient (drawdown) tests are simulated using a black oil simulator package (ECLIPSE 100). Pressure transient analysis is performed using PanSystem package. As a base case and for the comparison purpose, the same procedure is repeated for the totally homogeneous case (the same permeability for all grids) and a random (normally distributed) permeability distribution with the same mean and uniform variance. The effects of permeability distribution type on the pressure response are clarified. A strong impact of heterogeneity is observed as an increase in skin effect with increasing fractal dimension of permeability distribution. This additional (or pseudo) skin effect due to heterogeneity is correlated to the fractal dimension of the permeability distribution. As a further step, the procedure is repeated for different flow rates applied during the drawdown test. The correlation between the fractal dimension of permeability distribution and additional skin is improved by incorporating the rate into it. The methodology followed can be used in the assessment of reservoir heterogeneity quantitatively using pressure transient response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号