首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
利用粘弹性微分型本构关系和薄板理论,对线性变厚度粘弹性矩形薄板建立了在切向均布随从力作用下的运动微分方程,采用微分求积法研究了在随从力作用下线性变厚度粘弹性矩形薄板的稳定性问题,具体对对边简支对边固支和三边简支一边固支条件下体变为弹性、畸变服从Kelvin-Voigt模型的变厚度粘弹性矩形板在随从力下的广义特征值问题进行了求解,分析了薄板的长宽比、厚度比及材料的无量纲延滞时间的变化对随从力作用下矩形薄板的失稳形式及相应的临界荷载的影响.  相似文献   

2.
Transverse vibration characteristics of axially moving viscoelastic plate   总被引:4,自引:0,他引:4  
The dynamic characteristics and stability of axially moving viscoelastic rect- angular thin plate are investigated.Based on the two dimensional viscoelastic differential constitutive relation,the differential equations of motion of the axially moving viscoelastic plate are established.Dimensionless complex frequencies of an axially moving viscoelastic plate with four edges simply supported,two opposite edges simply supported and other two edges clamped are calculated by the differential quadrature method.The effects of the aspect ratio,moving speed and dimensionless delay time of the material on the trans- verse vibration and stability of the axially moving viscoelastic plate are analyzed.  相似文献   

3.
本文采用胡海昌教授提出的厚板方程,并用作者所提出的滑支边和广义滑支边的概念,再加上广义简支边的概念,用叠加法求解两邻边自由另两边任意支撑的矩形厚板静力问题一般解。  相似文献   

4.
本文研究两对边简支、中间有任意个粘弹性线支矩形板的横向振动问题,给出了一个求其动态特性的新的精确解析方法。首先将粘弹性线支反力视为是作用于板上的未知外力,求得了含有未知外力的对边简支矩形板横向振动微分方程的精确解析解,然后利用边界条件及线支处支承反力与位移的线性关系导出频率方程及振型函数,方法有独特的优越性。本文最后还给出了一些算例。  相似文献   

5.
四边简支矩形中厚板的弯曲   总被引:1,自引:0,他引:1  
本文采用Reissner中厚板理论求解了四边简支矩形中厚板的弯曲问题。文中首先对Reissner中厚板理论的控制方程进行了适当的变更,使之成为非耦联的二阶偏微分方程组,然后利用有限积分变换法求解所得新的控制方程,得到了四边简支矩形中厚板受均布载荷作用下的解析解。文中所述方法可用以求解具有其它边界条件和载荷的矩形中厚板的弯曲问题,同时还可移植应用于其它中厚板理论。  相似文献   

6.
陈英杰  吕婷婷  王超  崔鹏 《力学季刊》2020,41(3):571-581
本文在Reissner 理论基础上,应用功的互等定理推导了夹层矩形板稳定问题的基本解,在已推导出的夹层板基本解的基础上,利用功的互等法求解了两对边固定一边简支一边自由、两邻边简支另两邻边自由且角点支承、两邻边简支另两邻边自由且角点悬空三种不同边界条件下夹层板的稳定问题,给出了挠曲面方程及其对应的执行方程;进行了数值计算,并与有限元结果进行对照分析.结果表明:本文方法求解过程更简单,提供了一种求解夹层板稳定问题的新方法,计算结果对解决工程实际问题具有一定的参考价值.  相似文献   

7.
IntroductionDuringthelateseventies,ZhangFufanobtainedtheexactsolutionstothebendingproblemofrectangularcantileverplatesandrect...  相似文献   

8.
The direct separation of variables is used to obtain the closed-form solutions for the free vibrations of rectangular Mindlin plates. Three different characteristic equations are derived by using three different methods. It is found that the deflection can be expressed by means of the four characteristic roots and the two rotations should be expressed by all the six characteristic roots,which is the particularity of Mindlin plate theory. And the closed-form solutions,which satisfy two of the three governing equations and all boundary conditions and are accurate for rectangular plates with moderate thickness,are derived for any combinations of simply supported and clamped edges. The free edges can also be dealt with if the other pair of opposite edges is simply supported. The present results agree well with results published previously by other methods for different aspect ratios and relative thickness.  相似文献   

9.
针对非均匀Winkler弹性地基上变厚度矩形板的自由振动问题,通过一种有效的数值求解方法——微分变换法(DTM),研究其无量纲固有频率特性。已知变厚度矩形板对边为简支边界条件,其他两边的边界条件为简支、固定或自由任意组合。采用DTM将非均匀Winkler弹性地基上变厚度矩形板无量纲化的自由振动控制微分方程及其边界条件变换为等价的代数方程,得到含有无量纲固有频率的特征方程。数值结果退化为均匀Winker弹性地基上矩形板以及变厚度矩形板的情形,并与已有文献采用的不同求解方法进行比较,结果表明,DTM具有非常高的精度和很强的适用性。最后,在不同边界条件下分析地基变化参数、厚度变化参数和长宽比对矩形板无量纲固有频率的影响,并给出了非均匀Winkler弹性地基上对边简支对边固定变厚度矩形板的前六阶振型。  相似文献   

10.
An analysis for vibration of non-homogenous visco-elastic rectangular plate of linearly varying thickness subjected to thermal gradient has been discussed in the present investigation. For visco-elastic, the basic elastic and viscous elements are combined. We have taken Kelvin model for visco-elasticity that is the combination of the elastic and viscous elements in parallel. Here the elastic element means the spring and the viscous element means the dashpot. The governing differential equation of motion has been solved by Galerkin’s technique. Deflection, time period and logarithmic decrement at different points for the first two modes of vibration are calculated for various values of thermal gradients, non homogeneity constant, taper constant and aspect ratio for non-homogenous visco-elastic rectangular plate which is clamped on two parallel edges and simply supported on remaining two edges. Comparison studies have been carried out with homogeneous visco-elastic rectangular plate to establish the accuracy and versatility.  相似文献   

11.
Large deflection and postbuckling responses of functionally graded rectangular plates under transverse and in-plane loads are investigated by using a semi-analytical approach. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The plate is assumed to be clamped on two opposite edges and the remaining two edges may be simply supported or clamped or may have elastic rotational edge constraints. The formulations are based on the classical plate theory, accounting for the plate-foundation interaction effects by a two-parameter model (Pasternak-type), from which Winkler elastic foundation can be treated as a limiting case. A perturbation technique in conjunction with one-dimensional differential quadrature approximation and Galerkin procedure are employed in the present analysis. The numerical illustrations concern the large deflection and postbuckling behavior of functional graded plates with two pairs of constituent materials. Effects played by volume fraction, the character of boundary conditions, plate aspect ratio, foundation stiffness, initial compressive stress as well as initial transverse pressure are studied.  相似文献   

12.
The dimensionless equations of motion are derived based on the Mindlin plate theory to study the transverse vibration of thick rectangular plates without further usage of any approximate method. The exact closed form characteristic equations are given within the validity of the Mindlin plate theory for plates having two opposite sides simply supported. The six distinct cases considered involve all possible combinations of classical boundary conditions at the other two sides of rectangular plates. Accurate eigenfrequency parameters are presented for a wide range of aspect ratio η and thickness ratio δ for each case. The three dimensional deformed mode shapes together with their associated contour plots obtained from the exact closed form eigenfunctions are also presented. Finally, the effect of boundary conditions, aspect ratios and thickness ratios on the eigenfrequency parameters and vibratory behavior of each distinct cases are studied in detail. It is believed that in the present work, the exact closed form characteristic equations and their associated eigenfunctions, except for the plates with four edges simply supported, for the rest of considered six cases are obtained for the first time.  相似文献   

13.
Gradient elastic flexural Kirchhoff plates under static loading are considered. Their governing equation of equilibrium in terms of their lateral deflection is a sixth order partial differential equation instead of the fourth order one for the classical case. A variational formulation of the problem is established with the aid of the principle of virtual work and used to determine all possible boundary conditions, classical and non-classical ones. Two circular gradient elastic plates, clamped or simply supported at their boundaries, are analyzed analytically and the gradient effect on their static response is assessed in detail. A rectangular gradient elastic plate, simply supported at its boundaries, is also analyzed analytically and its rationally obtained boundary conditions are compared with the heuristically obtained ones in a previous publication of the authors. Finally, a plate with two opposite sides clamped experiencing cylindrical bending is also analyzed and its response compared against that for the cases of micropolar and couple-stress elasticity theories.  相似文献   

14.
The bending analysis of a thin rectangular plate is carried out in the framework of the second gradient elasticity. In contrast to the classical plate theory, the gradient elasticity can capture the size effects by introducing internal length. In second gradient elasticity model, two internal lengths are present, and the potential energy function is assumed to be quadratic function in terms of strain, first- and second-order gradient strain. Second gradient theory captures the size effects of a structure with high strain gradients more effectively rather than first strain gradient elasticity. Adopting the Kirchhoff’s theory of plate, the plane stress dimension reduction is applied to the stress field, and the governing equation and possible boundary conditions are derived in a variational approach. The governing partial differential equation can be simplified to the first gradient or classical elasticity by setting first or both internal lengths equal to zero, respectively. The clamped and simply supported boundary conditions are derived from the variational equations. As an example, static, stability and free vibration analyses of a simply supported rectangular plate are presented analytically.  相似文献   

15.
从三维弹性力学基本方程出发,通过假设自由边的边界位移函数,建立了正交异性层合板的状态方程,给出了对边自由,对边简支矩形板的解析解.此解满足层合板的基本方程和层间连续条件.用本文的方法比较容易处理层合板的自由边.算例表明,数值结果具有较高的精度.  相似文献   

16.
This paper analyses the bending of rectangular orthotropic plates on a Winkler elastic foundation.Appropriate definition of symplectic inner product and symplectic space formed by generalized displacements establish dual variables and dual equations in the symplectic space.The operator matrix of the equation set is proven to be a Hamilton operator matrix.Separation of variables and eigenfunction expansion creates a basis for analyzing the bending of rectangular orthotropic plates on Winkler elastic foundation and obtaining solutions for plates having any boundary condition.There is discussion of symplectic eigenvalue problems of orthotropic plates under two typical boundary conditions,with opposite sides simply supported and opposite sides clamped.Transcendental equations of eigenvalues and symplectic eigenvectors in analytical form given.Analytical solutions using two examples are presented to show the use of the new methods described in this paper.To verify the accuracy and convergence,a fully simply supported plate that is fully and simply supported under uniformly distributed load is used to compare the classical Navier method,the Levy method and the new method.Results show that the new technique has good accuracy and better convergence speed than other methods,especially in relation to internal forces.A fully clamped rectangular plate on Winkler foundation is solved to validate application of the new methods,with solutions compared to those produced by the Galerkin method.  相似文献   

17.
In this paper, an exact solution to the governing equations of the bending of a variable-thickness inhomogeneous rectangular plate is presented. The procedure is applicable to variable-thickness inhomogeneous rectangular plates with two opposite edges simply supported. The remaining ones subjected to a combination of clamped, simply supported, and free boundary conditions and between these two edges the plate may have varying thickness. The procedure is valuable in view of the fact that tables of deflections and stresses cannot be presented for variable-thickness inhomogeneous orthotropic plates as for uniform-thickness homogeneous isotropic plates even for commonly encountered loads because the results depend on the inhomogeneity coefficient and the orthotropic material properties instead of a single flexural rigidity. Numerical results, useful for the validation or otherwise of approximate solutions, are tabulated. The influences of the degree of the inhomogeneity, aspect ratio, thickness parameter and degree of non-uniformity on the deflections and stresses are investigated. This paper is partially supported by the Deanship of Scientific Research at King AbdulAziz University (Grant no. 172/427).  相似文献   

18.
Free transverse vibrations of nonhomogeneous orthotropic rectangular plates with bilinear thickness variation resting on Winkler foundation are presented here using two dimensional boundary characteristic orthogonal polynomials in the Rayleigh-Ritz method on the basis of classical plate theory. Gram-Schmidt process has been used to generate orthogonal polynomials. The nonhomogeneity of the plate is assumed to arise due to linear variations in elastic properties and density of the plate material with the in-plane coordinates. The two dimensional thickness variation is taken as the Cartesian product of linear variations along the two concurrent edges of the plate. Effect of nonhomogeneity parameters, aspect ratio and thickness variation together with foundation parameter on the natural frequencies has been illustrated for the first three modes of vibration for four different combinations of clamped, simply supported and free edges correct to four decimal places. Three dimensional mode shapes for specified plate for all the four boundary conditions have been plotted. A comparison of results in special cases with published one has been presented.  相似文献   

19.
A detailed investigation of the phenomenon of mode jumping in compressed struts on stiffening foundations and elastic plates of varying lengths is performed, with emphasis on the effects of altering boundary conditions. The variety of possible modal interactions is presented in a concise form using the parameter space of Arnol'd tongues, borrowed from non-linear dynamical systems theory. For the strut system, a full range of end conditions from simply supported to clamped is examined. For the plate, simply supported and clamped flexural conditions along both long (unloaded) and short (loaded) edges are considered, together with in-plane conditions ranging from free to pull in, to fully restrained. For each system, simply supported end conditions are found to provide protection against early mode jumping in a so-called “safety envelope”, but this is eroded as the end conditions are systematically altered from simply supported to clamped. For the plate system, mode jumping is induced at an earlier stage in the loading process by restricting the long (unloaded) edges against in-plane movement, but is delayed by clamping the same edges against rotation.  相似文献   

20.
The effect of thermal gradient on the free vibration of clamped visco-elastic rectangular plate with linearly thickness variations in both the directions has been studied here. The governing differential equation has been solved using Rayleigh-Ritz technique. The frequency equation is derived for the clamped boundary condition on all the four edges. The effect of linear temperature variation has been considered. Deflection and time period corresponding to the first two modes of vibrations of a clamped plate have been computed for various values of aspect ratio, thermal constants, and taper constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号