首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Reactive transport processes in a porous medium will often both cause changes to the pore structure, via precipitation and dissolution of biomass or minerals, and be affected by these changes, via changes to the material’s porosity and permeability. An understanding of the pore structure morphology and the changes to flow parameters during these processes is critical when modeling reactive transport. Commonly applied porosity–permeability relations in simulation models on the REV scale use a power-law relation, often with slight modifications, to describe such features; they are often used for modeling the effects of mineral precipitation and/or dissolution on permeability. To predict the reduction in permeability due to biomass growth, many different and often rather complex relations have been developed and published by a variety of authors. Some authors use exponential or simplified Kozeny–Carman relations. However, many of these relations do not lead to fundamentally different predictions of permeability alteration when compared to a simple power-law relation with a suitable exponent. Exceptions to this general trend are only few of the porosity–permeability relations developed for biomass clogging; these consider a residual permeability even when the pore space is completely filled with biomass. Other exceptions are relations that consider a critical porosity at which the porous medium becomes impermeable; this is often used when modeling the effect of mineral precipitation. This review first defines the scale on which porosity–permeability relations are typically used and aims at explaining why these relations are not unique. It shows the variety of existing approaches and concludes with their essential features.  相似文献   

3.
Transport in Porous Media - Stress dependency of permeability of porous rocks is described by means of a theoretical elastic cylindrical pore-shell model. This model is developed based on a bundle...  相似文献   

4.

The intrinsic permeability is a crucial parameter to characterise and quantify fluid flow through porous media. However, this parameter is typically uncertain, even if the geometry of the pore structure is available. In this paper, we perform a comparative study of experimental, semi-analytical and numerical methods to calculate the permeability of a regular porous structure. In particular, we use the Kozeny–Carman relation, different homogenisation approaches (3D, 2D, very thin porous media and pseudo 2D/3D), pore-scale simulations (lattice Boltzmann method, Smoothed Particle Hydrodynamics and finite-element method) and pore-scale experiments (microfluidics). A conceptual design of a periodic porous structure with regularly positioned solid cylinders is set up as a benchmark problem and treated with all considered methods. The results are discussed with regard to the individual strengths and limitations of the used methods. The applicable homogenisation approaches as well as all considered pore-scale models prove their ability to predict the permeability of the benchmark problem. The underestimation obtained by the microfluidic experiments is analysed in detail using the lattice Boltzmann method, which makes it possible to quantify the influence of experimental setup restrictions.

  相似文献   

5.

Porous media characterization is crucial to engineering projects where the pore shape has impact on performance gains. Membrane filters, sportswear fabrics, and tertiary oil recovery are a few examples. Kozeny–Carman (K–C) models are one of the most frequently used to understand, for instance, the relation between porosity, permeability, and other small-scale parameters. However, they have limitations, such as the inability to capture the correct dependence of permeability on porosity, the imperfect handling of the linear and nonlinear effects yielded by its fundamental quantities, and the insufficiency of geometrical parameters to predict the permeability correctly. In this paper, we cope with the problem of determining shape factors for generic geometries that represent sundry porous media configurations. Specifically, we propose a method that embeds the Poiseuille number into the classical K–C equation and returns a substitute shape factor term for its original counterpart. To the best of our knowledge, the existing formulations are unable to obtain shape factors for pores whose geometry is beyond the regular ones. We apply a Galerkin-based integral (GBI) method that determines shape factors for generic cross sections of pore channels. The approach is tested on straight capillaries with arbitrary cross sections subject to steady single-phase flow under the laminar regime. We show that shape factors for basic geometries known from experimental results are replicable exactly. Besides, we provide shape factors with precision up to 4 digits for a class of geometries of interest. As a way to demonstrate the applicability of the GBI approach, we report a case study that determines shape factors for 19 generic individual pore sections of a laboratory experiment involving flow rate measurements in an industrial arrangement of a water-agar packed bed. Porosity, flow behavior, and velocity distributions determined numerically achieve a narrow agreement with experimental values. The findings of this study provide parameters that can help to design new devices or mechanisms that depend on arbitrary pore shapes, as well as to characterize fluid flows in heterogeneous porous media.

  相似文献   

6.
Characteristics of flow regimes in porous media, along the processes of energy dissipation in each regime, are critical for applications of such media. The current work presents new experimental data for water flow in packed steel spheres of 1- and 3-mm diameters. The porosity of the porous media was about 35 % for both cases. The extensive dataset covered a broad range of flow Reynolds number such that several important flow regimes were encountered, including the elusive pre-Darcy regime, which is rarely or never seen in porous-media literature and turbulent regime. When compared to previous information, the results of this study are seen to add to the divergence of available data on pressure drop in packed beds of spheres. The divergence was also present in the coefficients of Ergun equation and in the Kozeny–Carman constant. The porous media of the current work were seen to exhibit different values of permeability and Forchheimer coefficient in each flow regime. The current data correlated well using the friction factor based on the permeability (measured in the Darcy regime) and the Reynolds number based on the same length scale. An attempt was made to apply recent theoretical results regarding the applicability of the quadratic and cubic Forchheimer corrections in the strong and weak inertia regime.  相似文献   

7.
Among all properties of reservoir rocks, permeability is an important parameter which is typically measured from core samples in the laboratory. Due to limitations of core drilling all over a reservoir, simulation of rock porous media is demanded to explore more scenarios not seen in the available data. One of the most accurate methods is cross correlation based simulation (CCSIM) which recently has broadly applied in geoscience and porous media. The purpose of this study is producing realizations with the same permeability trend to a real sample. Berea sandstone sample is selected for this aim. Permeability results, extracted from smaller sub-samples of the original sample, showed that classic Kozeny–Carman permeability trend is not suitable for this sample. One reason can be due to lack of including geometrical and fractal properties of pore-space distribution in this equation. Thus, a general trend based on fractal dimensions of pore-space and tortuosity of the Berea sample is applied in this paper. Results show that direct 3D stochastic modeling of porous media preserves porous structure and fractal behavior of rock. On the other hand, using only 2D images for constructing the 3D pore structures does not reproduce the measured experimental permeability. For this aim, a hierarchical sampling is implemented in two and three steps using both 2D and 3D stochastic modeling. Results showed that two-step sampling is not suitable enough, while the utilized three-step sampling occurs to be show excellent performance by which different models of porous media with the same permeability trend as the Berea sandstone sample can be generated.  相似文献   

8.
An investigation of the anisotropic permeability of a carbon cloth gas diffusion layer (GDL) based on the integration of X‐ray micro‐tomography and lattice Boltzmann (LB) simulation is presented. The method involves the generation of a 3D digital model of a carbon cloth GDL as manufactured using X‐ray shadow images acquired through X‐ray micro‐tomography at a resolution of 1.74 µm. The resulting 3D model is then split into 21 volumes and integrated with a LB single‐phase numerical solver in order to predict three orthogonal permeability tensors when a pressure difference is prescribed in the through‐plane direction. The 21 regions exhibit porosity values in the range of 0.910–0.955, while the average fibre diameter is 4 µm. The results demonstrate that the simulated through‐plane permeability is about four times higher than the in‐plane permeability for the sample imaged and that the corresponding degrees of anisotropy for the two orthogonal off‐principal directions are 0.22 and 0.27. The results reveal that flow channelling can play an important role in gas transport through the GDL structure due to the non‐homogeneous porosity distribution through the material. The simulated results are also applied to generate a parametric coefficient for the Kozeny–Carman (KC) method of determining permeability. The current research reveals that by applying the X‐ray tomography and LB techniques in a complementary manner, there is a strong potential to gain a deeper understanding of the microscopic fluidic phenomenon in representative models of porous fuel cell structures and how this can influence macroscopic transport characteristics which govern fuel cell performance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The representation of the permeability coefficient tensor for capillary models of porous media displaying isotropic and anisotropic flow properties is considered. The representation proposed is compared with the Kozeny-Carman formula. It is shown that in general, as distinct from the widely accepted representation of the Carman constant in the form of a product of the form factor and tortuosity, this constant is equal to a combination of three coefficients, namely the form factor, the tortuosity, and the structure coefficient. The presence of the latter is due to the fact that in periodic capillary models the porosity is not equal to the surface porosity. It is shown that the Carman constant, the form factor, and the structure coefficient are not universal and their intervals of variation are calculated. The results obtained make it possible to explain and interpret numerous experimental data on the determination of the Carman constant in various porous media.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 96–104, July–August, 1996.  相似文献   

10.
The classic Kozeny–Carman equation (KC) uses parameters that are empirically based or not readily measureable for predicting the permeability of unfractured porous media. Numerous published KC modifications share this disadvantage, which potentially limits the range of conditions under which the equations are applicable. It is not straightforward to formulate non-empirical general approaches due to the challenges of representing complex pore and fracture networks. Fractal-based expressions are increasingly popular in this regard, but have not yet been applied accurately and without empirical constants to estimating rock permeability. This study introduces a general non-empirical analytical KC-type expression for predicting matrix and fracture permeability during single-phase flow. It uses fractal methods to characterize geometric factors such as pore connectivity, non-uniform grain or crystal size distribution, pore arrangement, and fracture distribution in relation to pore distribution. Advances include (i) modification of the fractal approach used by Yu and coworkers for industrial applications to formulate KC-type expressions that are consistent with pore size observations on rocks. (ii) Consideration of cross-flow between pores that adhere to a fractal size distribution. (iii) Extension of the classic KC equation to fractured media absent empirical constants, a particular contribution of the study. Predictions based on the novel expression correspond well to measured matrix and fracture permeability data from natural sandstone and carbonate rocks, although the currently available dataset for fractures is sparse. The correspondence between model calculation results and matrix data is better than for existing models.  相似文献   

11.
Two-dimensional porous media whose random cross-sections are derived from site percolation are constructed. The longitudinal flow of a Newtonian fluid in the Stokes approximation is then computed and the longitudinal permeability is obtained. Two methods are used and yield the same result when porosity is low. The Carman equation is shown to apply within ±7% when porosity is within the range from 0 to 0.75. Finally, random structures derived from stick percolation are investigated; results are qualitatively the same, but the Carman equation yields a poorer approximation.  相似文献   

12.
A model for predicting the strength of a cement sheath adjacent to a production wellbore without consideration of internal and temperature stresses is proposed based on solutions of the Lamé problems for one- and two-layer tubes and the Huber–Mises yield criterion using the model of a perfectly plastic isotropic body.  相似文献   

13.
We invoke pore-scale models to evaluate grain shape effects on petrophysical properties of three-dimensional (3D) images from micro-CT scans and consolidated grain packs. Four sets of grain-packs are constructed on the basis of a new sedimentary algorithm with the following shapes: exact angular grain shapes identified from micro-CT scans, ellipsoids fitted to angular grains, and spheres with volume and surface-to-volume ratio equal to original angular grains on a grain-by-grain basis. Subsequently, a geometry-based cementation algorithm implements pore space alteration due to diagenesis. Eight micro-CT scans and 144 grain-pack images with $500 \times 500 \times 500$ voxels (the resolution units of 3D images) are analyzed in this study. Absolute permeability, formation factor, and capillary pressure are calculated for each 3D image using numerical methods and compared to available core measurements. Angular grain packs give rise to the best agreement with experimental measurements. Cement volume and its spatial distribution in the pore space significantly affect all calculated petrophysical properties. Available empirical permeability correlations for non-spherical grains underestimate permeability between 30 and 70 % for the analyzed samples. Kozeny–Carman’s predictions agree with modeled permeability for spherical grain packs but overestimate permeability for micro-CT images and non-spherical grain packs when volume-based radii are used to calculate the average grain size in a pack. We identify surface-to-volume ratio and grain shape as fundamental physical parameters that control fluid distribution and flow in porous media for equivalent porosity samples.  相似文献   

14.
Quantification of natural gas transport in organic-rich shale is important in predicting natural gas production. However, laboratory measurements are challenging due to tight nature of the rock and include large uncertainties. The emphasis of this work is to understand mass transport mechanisms inside the organic nanoporous material known as kerogen under subsurface conditions and describe its permeability. This requires a multi-scale theoretical approach that includes flow measurements in model nanocapillaries and within their network. Molecular dynamics simulation results of steady-state supercritical methane flow in single-wall carbon nanotube are presented in this article. A transition from convection to molecular diffusion is observed. The simulation results show that the adsorbed methane molecules are mobile and contribute a significant portion to the total mass flux in nanocapillaries with diameter \({<}\)10 nm. They experience cluster diffusion that is dependent on the applied pressure drop across the capillary. A modified Hagen–Poiseuille equation is proposed considering the convective–diffusive nature of the overall transport in nanocapillary. The molecular-level study of steady-state transport is extended to a simple network of interconnected nanocapillaries representing kerogen. The modified Hagen–Poiseuille equation leads to a representative elementary volume of the model kerogen. The estimated permeability of the volume is sensitive to compressed and adsorbed fluids density ratio and to surface properties of the nanocapillary walls, indicating that fluid–wall interactions driven by molecular forces could be significant during the large-scale transport within shale. A modified Kozeny–Carman correlation is proposed, relating kerogen porosity and tortuosity to the permeability.  相似文献   

15.
We consider the system of elastostatics for an elastic medium consisting of an imperfection of small diameter, embedded in a homogeneous reference medium. The Lamé constants of the imperfection are different from those of the background medium. We establish a complete asymptotic formula for the displacement vector in terms of the reference Lamé constants, the location of the imperfection and its geometry. Our derivation is rigorous, and based on layer potential techniques. The asymptotic expansions in this paper are valid for an elastic imperfection with Lipschitz boundaries. In the course of derivation of the asymptotic formula, we introduce the concept of (generalized) elastic moment tensors (Pólya–Szegö tensor) and prove that the first order elastic moment tensor is symmetric and positive (negative)-definite. We also obtain estimation of its eigenvalue. We then apply these asymptotic formulas for the purpose of identifying with high precision the order of magnitude of the diameter of the elastic inclusion, its location, and its elastic moment tensors.  相似文献   

16.
A theory of local probing of borehole zones in porous and permeable rocks by means of acoustic waves is developed. Acoustic signals are assumed to propagate in an annular gap between the probe body and porous permeable wall of the borehole. Quantitative characteristics and special features of wave dynamics depending on the character of inhomogeneity of the porous medium are considered, in particular, in the case with radial fractures or a poorly permeable crust around the channel. The results obtained show that permeability and porosity of rocks in some cases exert a significant effect on evolution of acoustic signals in the borehole.  相似文献   

17.
Effective permeability for porous rocks is calculated using mean field theory. We make two simplifying assumptions about the internal conductances in a network representation of the porous rock: (i) Pore space is characterized by a uniform fractal scaling; (ii) the internal conductances depend only on the characteristic pore sizes. Within these approximations, it is possible to derive a simple probability density for the internal conductances which is used for calculating effective permeability. Good agreement between calculations and experimental data of permeability vs. porosity is achieved.  相似文献   

18.
In order to understand the effects of the wall permeability on turbulence near a porous wall, flow field measurements are carried out for turbulent flows in a channel with a porous bottom wall by a two-component particle image velocimetry (PIV) system. The porous media used are three kinds of foamed ceramics which have almost the same porosity (0.8) but different permeability. It is confirmed that the flow becomes more turbulent over the porous wall and tends to be turbulent even at the bulk Reynolds number of Reb=1300 in the most permeable wall case tested. Corresponding to laminar to turbulent transition, the magnitude of the slip velocity on the porous wall is found to increase drastically in a narrow range of the Reynolds number. To discuss the effects of the wall roughness and the wall permeability, detailed discussions are made of zero-plane displacement and equivalent wall roughness for porous media. The results clearly indicate that the turbulence is induced by not only the wall roughness but the wall permeability. The measurements have also revealed that as Reb or the wall permeability increases, the wall normal fluctuating velocity near the porous wall is enhanced due to the effects of the wall permeability. This leads to the increase of the turbulent shear stress resulting in higher friction factors of turbulence over porous walls.  相似文献   

19.
To understand the permeability effects on turbulent rib-roughened porous channel flows, particle image velocimetry measurements are performed at the bulk Reynolds number of 5000–20000. Solid impermeable and porous ribs are considered for the rib-roughness whose geometry is categorised in the k-type roughness whose pitch/rib-height is 10. Three isotropic porous media with nearly the same porosity: 0.8, and different permeabilities (0.004, 0.020, 0.033 mm2) are applied. It is observed that the recirculation between the ribs becomes weak and the recirculation vortex submerges into the porous wall as the wall permeability and Reynolds number increase for both solid and porous rib cases while the recirculation vanishes in high permeable cases. These phenomena result in characteristic difference in turbulence quantities. By fitting the mean velocity profiles to the log-law form, the permeability effects of both rib and bottom wall on the log-law parameters and the equivalent sand-grain roughness are discussed. It is concluded that the zero-plane displacement increases while the von Kármán constant and the equivalent sand-grain roughness decrease as the wall and rib permeability increases.  相似文献   

20.
A solution describing the displacement and stress fields around expanding spherical and cylindrical cavities with allowance for pore collapse is constructed using the theory of small elastic deformations of a homogeneous isotropic porous medium in closed form. Transition of the medium into a plastic state is modeled using the Tresca-Saint Venant yield condition. Porosity change is described on the basis of a mathematical model developed taking into account the increase in the stiffness of the porous material at the moment of pore collapse. It is shown that in the elastic deformation stage, the porosity does not change; an increase in the pressure leads to the formation of a region of plastic compression, in part of which, the pores collapse. Stress and displacement fields in the porous medium during unloading are constructed. It is shown that under certain conditions, the elastic unloading stage is followed by the plastic reflow stage to form a region of pore expansion. As the pressure decreases, the boundary of this region simultaneously reaches the region of plastic reflow and the region of pore collapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号