首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
Crack line field analysis method has become an independent method for crack elastic-plastic analysis, which greatly simplifies the complexity of crack elastic-plastic problems and overcomes the corresponding mathematical difficulty. With this method, the precise elastic-plastic solutions near crack lines for variety of crack problems can be obtained. But up to now all solutions obtained by this method were for different concrete problems, no general steps and no general form of matching equations near crack line are given out. With crack line analysis method, this paper proposes the general steps of elastic-plastic analysis near crack line for mode Ⅰ crack in elastic-perfectly plastic solids under plane stress condition, and in turn given out the solving process and result for a specific problem.  相似文献   

2.
The elastic-plastic stress distribution and the elastic-plastic boundary con- figuration near a crack surface region are significant but hard to obtain by means of the conventional analysis. A crack line analysis method is developed in this paper by consid- ering the crack surface as an extension of the crack line. The stresses in the plastic zone, the length, and the unit normal vector of the elastic-plastic boundary near a crack surface region are obtained for an antiplane crack in an elastic-perfectly plastic solid. The usual small scale yielding assumptions are not needed in the analysis.  相似文献   

3.
The near crack line field analysis method has been used to investigate into ModeⅢ quasistatically propagating crack in an elastic-perfectly plastic material.Thesignificance of this paper is that the usual small scale yielding theory has been brokenthrough.By obtaining the general solutions of the stresses and the displacement rate ofthe near crack line plastic region,and by matching the general solutions with theprecise elastic fields(not the usual elastic K-dominant fields)at the elastic-plasticboundary,the precise and new solutions of the stress and deformation fields,the sizeof the plastic region and the unit normal vector of the elastic-plastic boundary havebeen obtained near the crack line.The solutions of this paper are sufficiently precisenear the crack line region because the roughly qualitative assumptions of the smallscale yielding theory have not been used and no other roughly qualitative assumptionshave been taken,either.The analysis of this paper shows that the assumingly“steady-state cas  相似文献   

4.
In this paper,a weighted residual method for the elastic-plastic analysis near a crack tip is systematically given by taking the model of power-law hardening under plane strain condition as a sample.The elastic-plastic solutions of the crack tip field and an approach based on the superposition of the nonlinear finite element method on the complete solution in the whole crack body field,to calculate the plastic stress intensity factors,are also developed.Therefore,a complete analysis based on the calculation both for the crack tip field and for the whole crack body field is provided.  相似文献   

5.
The fracture problems near the similar orthotropic composite materials are interface crack tip for mode Ⅱ of double disstudied. The mechanical models of interface crack for mode Ⅱ are given. By translating the governing equations into the generalized hi-harmonic equations, the stress functions containing two stress singularity exponents are derived with the help of a complex function method. Based on the boundary conditions, a system of non-homogeneous linear equations is found. Two real stress singularity exponents are determined be solving this system under appropriate conditions about bimaterial engineering parameters. According to the uniqueness theorem of limit, both the formulae of stress intensity factors and theoretical solutions of stress field near the interface crack tip are derived. When the two orthotropic materials are the same, the stress singularity exponents, stress intensity factors and stresses for mode II crack of the orthotropic single material are obtained.  相似文献   

6.
In the investigation on fracture mechanics, the potential function was introduced,and the moving differential equation was constructed. By making Laplace and Fourier transformation as well as sine and cosine transformation to moving differential equations and various responses, the dual equation which is constructed from boundary conditions lastly was solved. This method of investigating dynamic crack has become a more systematic one that is used widely. Some problems are encountered when the dynamic crack is studied.After the large investigation on the problems, it is discovered that during the process of mathematic derivation, the method is short of precision, and the derived results in this method are accidental and have no credibility. A model for example is taken to explain the problems existing in initial deriving process of the integral-transformation method of dynamic crack.  相似文献   

7.
The Voronoi cell finite element method (VCFEM) is adopted to overcome the limitations of the classic displacement based finite element method in the numerical simulation of heterogeneous materials. The parametric variational principle and quadratic programming method are developed for elastic-plastic Voronoi finite element analysis of two-dimensional problems. Finite element formulations are derived and a standard quadratic programming model is deduced from the elastic-plastic equations. Influence of microscopic heterogeneities on the overall mechanical response of heterogeneous materials is studied in detail. The overall properties of heterogeneous materials depend mostly on the size, shape and distribution of the material phases of the microstructure. Numerical examples are presented to demonstrate the validity and effectiveness of the method developed.  相似文献   

8.
In the paper, we extend the implicit iterative method for linear ill-posed operator equations to solve nonlinear ill-posed problems. We show that under some conditions the error sequence of solutions of the nonlinear implicit iterative method is monotonically decreasing and, with this monotonicity, prove convergence of the new method for both the exact and perturbed equations.  相似文献   

9.
The antiplane problem of circular arc rigid line inclusions under antiplane concentrated force and longitudinal shear loading was dealt with. By using RiemannSchwaz‘s symmetry principle integrated with the singularity analysis of complex functions, the general solution of the problem and the closed form solutions for some important practical problems were presented. The stress distribution in the immediate vicinity of circular arc rigid line end was examined in detail. The results show that the singular stress fields near the rigid inclusion tip possess a square-root singularity similar to that for the corresponding crack problem under antiplane shear loading, but no oscillatory character. Furthermore, the stresses are found to depend on geometrical dimension, loading conditions and materials parameters. Some practical results concluded are in agreement with the previous solutions.  相似文献   

10.
A new numerical technique named as fuzzy finite difference method is proposed to solve the heat conduction problems with fuzzy uncertainties in both the phys- ical parameters and initial/boundary conditions. In virtue of the level-cut method, the difference discrete equations with fuzzy parameters are equivalently transformed into groups of interval equations. New stability analysis theory suited to fuzzy difference schemes is developed. Based on the parameter perturbation method, the interval ranges of the uncertain temperature field can be approximately predicted. Subsequently, fuzzy solutions to the original difference equations are obtained by the fuzzy resolution theorem. Two numerical examples are given to demonstrate the feasibility and efficiency of the presented method for solving both steady-state and transient heat conduction problems.  相似文献   

11.
Crack line analysis is an effective way to solve elastic-plastic crack problems.Application of the method does not need the traditional small-scale yielding conditions and can obtain sufficiently accurate solutions near the crack line. To address mode-Ⅲ crack problems under the perfect elastic-plastic condition,matching procedures of the crack line analysis method are summarized and refined to give general forms and formulation steps of plastic field,elastic-plastic boundary,and elastic-plastic matching equations near the crack line. The research unifies mode-Ⅲ crack problems under different conditions into a problem of determining four integral constants with four matching equations.An example is given to verify correctness,conciseness,and generality of the procedure.  相似文献   

12.
EXACTSOLUTIONSOFNEARCRACKLINEFIELDSFORMODEICRACKUNDERPLANESTRESSCONDITIONINANELASTIC-PERFECTLYPLASTICSOLIDEXACTSOLUTIONSOFNEA...  相似文献   

13.
THEEXACTSOLUTIONSOFELASTIC-PLASTICCRACKLINEFIELDFORMODEIIPLANESTRESSCRACKYiZhijian(易志坚)WangShijie(王士杰)WangXiangjian(王向坚)(Rece...  相似文献   

14.
The strain energy density theory and the near crack line analysis method are applied to investigate an eccentric crack loaded by two pairs of tensile point forces in a finite plate. The minimum values of SED in the vicinity of the crack tip are determined, the initial growth orientation of crack are determined. Obtained is the elastic-plastic solution near the crack line of an eccentric crack loaded by two pairs of point tensile forces under large scale yielding condition. More specifically, the near field solution contains the unit normal vector of the elastic-plastic boundary and the elastic-plastic stress field. The length of the plastic zone along the crack line is found to vary with the external load and the bearing capacity of a finite plate with an eccentric crack loaded by two pairs of tensile point forces. Compared with small scale yielding condition, the normalized load obtained is higher than those under small scale yielding condition when the length of the plastic zone is the same.  相似文献   

15.
利用裂纹线场方法对理想弹塑性材料偏心裂纹板在裂纹面受一对集中拉力问题进行了弹塑性分析,并且获得了理论解.这个解包括:裂纹线附近弹塑性边界上的单位法向矢量,裂纹线附近的弹塑性解析解、最大塑性区长度、裂纹线上的塑性区长度随荷载的变化规律及其承载力.该分析不受小范围屈服假设的限制,并且不附加假使条件.结果在裂纹线附近足够精确.  相似文献   

16.
The failure behavior of an elastic-perfectly plastic body with a crack loaded by two pairs of concentrated shear forces is discussed. The analytical solutions of an eccentric crack in a finite plate loaded by two pairs of point shear forces are obtained. It includes the unit normal vector of the elastic-plastic boundary near the crack line, the elastic-plastic stress fields near crack line and the law of the plastic zone along the crack line with external loads. The solutions of this paper are sufficiently precise near the crack line in elastic-perfectly plastic materials. Subsequently, the present results are compared with solutions based on the minimum strain energy density theory and elastic-plastic solutions under small scale yielding condition. On the basis of the minimum strain energy density (SED) theory, the minimum values of SED in the vicinity of the crack tip are determined, the initial growth orientation of crack are determined. It is found that the normalized load under large scale yielding condition is higher than those under small scale yielding condition when the length of the plastic zone is the same.  相似文献   

17.
I.IntroductionThenearcracklineanalysismethodhasbeengreatlyimprovedbyYill'2].In[l,21,theimprovednearcracklineanalysismethodhasbeenusedtoinvestigateamodeIllcrackinanelastic-perfectlyplasticsolid.Andthesmallscaleyieldingconditionshavebeencompletelyabandoned,andcompletelynewandprecisesolutionsoftheelastic-plasticfieldsofamodeillstationarycrackandamodelillquasi-staticallygrowingcrackwithremotealltiplaneshearinginanelastic-perfectlyplastic'materialhavebeenobtained,respectively.In[3]weanalyzedthene…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号