首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composite structures are often used in aircraft because of advantages offered by a high strength to weight ratio. Sound transmission through an infinite laminated composite cylindrical shell is studied in the context of the transmission of airborne sound into aircraft interior. The shell is immersed in an external fluid medium and contains an internal fluid, and airflow in an external fluid medium moves with a constant velocity. The different parameters were used to see how laminate specification affected noise transmission. An exact solution is obtained by solving the vibration equation of laminated composite shell and acoustic wave equations simultaneously. Transmission losses (TLs) obtained from numerical solution are compared with those of other authors. The effects of different source condition, structural properties and flight conditions on TL are studied for a range of values, especially, incident angle of the plane wave, Mach number and flight altitude of aircraft, stack sequences, angle of warp and damping.  相似文献   

2.
A study on free harmonic wave propagation in a double-walled cylindrical shell, whose walls sandwich a layer of porous materials, is presented within the framework of the classic theory for laminated composite shells. One of the most effective components of the wave propagation through the porous core is estimated with the aid of a fiat panel with the same geometrical properties. By considering the effective wave component, the porous layer is modeled as a fluid with equivalent properties. Thus, the model is simplified as a double-walled cylindrical shell trapping the fluid media. Finally, the transmission loss (TL) of the structure is estimated in a broadband frequency, and then the results are compared.  相似文献   

3.
This paper reports the results of an investigation into the vibration of functionally graded cylindrical shells with flowing fluid, embedded in an elastic medium, under mechanical and thermal loads. By considering rotary inertia, the first-order shear deformation theory (FSDT) and the fluid velocity potential, the dynamic equation of functionally graded cylindrical shells with flowing fluid is derived. Here, heat conduction equation along the thickness of the shell is applied to determine the temperature distribution and material properties are assumed to be graded distribution along the thickness direction according to a power-law in terms of the volume fractions of the constituents. The equations of eigenvalue problem are obtained by using a modal expansion method. In numerical examples, effects of material composition, thermal loading, static axial loading, flow velocity, medium stiffness and shell geometry parameters on the free vibration characteristics are described. The new features in this paper are helpful for the application and the design of functionally graded cylindrical shells containing fluid flow.  相似文献   

4.
The acoustic behavior of double-walled laminated composite panels consisting of two porous and air gap middle layers is studied within the classical laminated plate theory (CLPT). Thus, viscous and inertia coupling in a dynamic equation, as well as stress transfer, thermal and elastic coupling of porous material ave based on the Biot theory. In addition, the wave equations are extracted according to the vibration equation of composite layers. The transmission loss (TL) of the structure is then calculated by solving these equations simultaneously. Statistical energy analysis (SEA) is developed to divide the structure into specific subsystems, and power transmission is extracted with balancing power flow equations of the subsystems. Comparison between the present work and the results reported elsewhere shows excellent agreement. The results also indicate that, although favorable enhancement is seen in noise control particularly at high frequencies, the corresponding parameters associated with fluid phase and solid phase of the porous layer are important on TL according to the boundary condition interfaces. Finally, the influence of composite material and stacking sequence on power transmission is discussed.  相似文献   

5.
IntroductionInrecentyears,fiber_reinforcedcompositelaminatedshellstructuresarewidelyusedintheaerospace ,marineindustry ,automobileindustryandotherengineeringapplications.Duringtheoperationallife ,thevarianceoftemperatureandmoisturereducestheelasticmoduli…  相似文献   

6.
A new 4-node quadrilateral flat shell element is developed for geometrically nonlinear analyses of thin and moderately thick laminated shell structures. The fiat shell element is constructed by combining a quadrilateral area co- ordinate method (QAC) based membrane element AGQ6- II, and a Timoshenko beam function (TBF) method based shear deformable plate bending element ARS-Q12. In order to model folded plates and connect with beam elements, the drilling stiffness is added to the element stiffness matrix based on the mixed variational principle. The transverse shear rigidity matrix, based on the first-order shear deformation theory (FSDT), for the laminated composite plate is evaluated using the transverse equilibrium conditions, while the shear correction factors are not needed. The conventional TBF methods are also modified to efficiently calculate the element stiffness for laminate. The new shell element is extended to large deflection and post-buckling analyses of isotropic and laminated composite shells based on the element independent corotational formulation. Numerical re- sults show that the present shell element has an excellent numerical performance for the test examples, and is applicable to stiffened plates.  相似文献   

7.
Free-edge effects in laminated, circular, cylindrical shell panels subjected to hygrothermal loading are studied by utilizing displacement-based technical theories. Starting from the most general displacement field of elasticity for long, circular, cylindrical shells, appropriate reduced displacement fields are determined for laminated composite shell panels with cross-ply and antisymmetric angle-ply layups. An equivalent single-layer shell theory is used to analytically determine the constant parameters appearing in the reduced displacement fields. A layerwise shell theory is then employed to analytically determine the local displacement functions and the boundary-layer interlaminar stresses in cross-ply and antisymmetric angle-ply shell panels under hygroscopic and/or thermal changes. Several numerical examples for the distributions of transverse shear and normal stresses in various shell panels under a uniform temperature change are presented and discussed.  相似文献   

8.
Buckling loads of circular cylindrical laminated composite panels are obtained usingSanders–Koiter (e.g. Sanders, 1959 ; Koiter, 1959) , Love (e.g. Love, 1927) and Donnell (e.g. Loo, 1957) shell theories with a first-order, shear-deformationapproach and a Rayleigh–Ritz method that accounts for different boundary conditions andmaterial anisotropy. Results obtained using Sanders–Koiter, Love, Donnell shell theories arecompared with those obtained from finite element simulations, where the curved panels aremodeled using nine-node quadrilateral continuum-based shell elements that are independent of anyshell theory. Comparisons with finite element results indicate that Donnells theory could be inerror for some lamination schemes and geometrical parameters.  相似文献   

9.
In this paper, investigation on buckling and post-buckling behaviors of a laminated cylindrical shell of functionally graded material (FGM) with the piezoelectric fiber reinforced composite (PFRC) actuators subjected to thermal and axial compressed loads is presented. Based on the Donnell assumptions, the material properties of the FGM layer vary smoothly through the laminated cylindrical shell thickness according to a power law distribution of the volume fraction of constituent materials. In the present study, a numerical procedure for the laminated cylindrical shell is used based on the Ritz energy method and the nonlinear strain–displacement relations. Some useful discussion and numerical examples are presented to show various effects of temperature field, volume fraction and geometric parameters on the buckling and post-buckling behaviors of the laminated cylindrical shell with PFRC.  相似文献   

10.
Based on the electro-mechanical coupling theory and the laminate elasticity theory, an electro-elastic solution is obtained for the fiber-reinforced cylindrical composites with integrated piezoelectric actuators when subjected to mechanical and electrical loadings. The hybrid composite is composed of three parts: internal piezoelectric actuator, fiber-reinforced laminated interlayer, and external piezoelectric actuator. The general solution in each piezoelectric smart layer is obtained by introducing three undetermined constants, and the general solutions in the fiber-reinforced laminated interlayer are obtained by means of the state-space method. The mechanical behaviors of the hybrid fiber-reinforced cylindrical composites are investigated. The illustrative examples show that the fiber’s angle, the stacking sequence as well as the applied electric loading strongly affect the physical fields in the fiber-reinforced multilayered cylindrical composites.  相似文献   

11.
In this paper,based on the theory of Donnell-type shallow shell,a new displacement-type stability equations is first developed for laminated composite circular conical shellswith triangular grid stiffeners by using the variational calculus and generalized smeared-stiffener theory.The most general bending stretching couplings,the effect of eccentricity ofstiffeners are considered.Then,for general stability of composite triangular grid stiffenedconical shells without twist coupling terms,the approximate formulas are obtained forcritical external pressure by using Galerkin‘s procedure.Numerical examples for a certainC/E composite conical shells with inside triangular grid stiffeners are calculated and theresults are in good agreement with the experimental data.Finally,the influence of someparameters on critical external pressure is studied.The stability equations developed andthe formulas for critical external pressure obtained in this paper should be very useful in theastronautical engineering design.  相似文献   

12.
Li  Chaofeng  Li  Peiyong  Zhong  Bingfu  Wen  Bangchun 《Nonlinear dynamics》2019,95(3):1903-1921

The geometrically nonlinear forced vibration response of non-continuous elastic-supported laminated composite thin cylindrical shells is investigated in this paper. Two kinds of non-continuous elastic supports are simulated by using artificial springs, which are point and arc constraints, respectively. By using a set of Chebyshev polynomials as the admissible displacement function, the nonlinear differential equation of motion of the shell subjected to periodic radial point loading is obtained through the Lagrange equations, in which the geometric nonlinearity is considered by using Donnell’s nonlinear shell theory. Then, these equations are solved by using the numerical method to obtain nonlinear amplitude–frequency response curves. The numerical results illustrate the effects of spring stiffness and constraint range on the nonlinear forced vibration of points-supported and arcs-supported laminated composite cylindrical shells. The results reveal that the geometric nonlinearity of the shell can be changed by adjusting the values of support stiffness and distribution areas of support, and the values of circumferential and radial stiffness have a more significant influence on amplitude–frequency response than the axial and torsional stiffness.

  相似文献   

13.
李骁  李映辉  赵华 《力学季刊》2016,37(2):266-273
研究了轴向运动层合圆柱壳体的振动特性.基于Donnell壳体理论,建立了轴向运动层合圆柱壳体的横向振动方程,使用Galerkin方法求解该振动方程,得到其固有频率,通过与有限元结果对比说明方法的有效性.分析了轴向速度、纤维方向角、长径比和厚径比对壳体振动特性的影响.研究表明:当纤维方向角为 (15?/-15?)s时,轴向运动柱壳前3阶固有频率达到最大值.  相似文献   

14.
The generalized differential quadrature method (GDQM) is employed to consider the free vibration and critical speed of moderately thick rotating laminated composite conical shells with different boundary conditions developed from the first-order shear deformation theory (FSDT). The equations of motion are obtained applying Hamilton’s concept, which contain the influence of the centrifugal force, the Coriolis acceleration, and the preliminary hoop stress. In addition, the axial load is applied to the conical shell as a ratio of the global critical buckling load. The governing partial differential equations are given in the expressions of five components of displacement related to the points lying on the reference surface of the shell. Afterward, the governing differential equations are converted into a group of algebraic equations by using the GDQM. The outcomes are achieved considering the effects of stacking sequences, thickness of the shell, rotating velocities, half-vertex cone angle, and boundary conditions. Furthermore, the outcomes indicate that the rate of the convergence of frequencies is swift, and the numerical technique is superior stable. Three comparisons between the selected outcomes and those of other research are accomplished, and excellent agreement is achieved.  相似文献   

15.
The bending and free vibration of a rotating sandwich cylindrical shell are analyzed with the consideration of the nanocomposite core and piezoelectric layers subjected to thermal and magnetic fields by use of the first-order shear deformation theory (FSDT) of shells. The governing equations of motion and the corresponding boundary conditions are established through the variational method and the Maxwell equation. The closed-form solutions of the rotating sandwich cylindrical shell are obtained. The effects of geometrical parameters, volume fractions of carbon nanotubes, applied voltages on the inner and outer piezoelectric layers, and magnetic and thermal fields on the natural frequency, critical angular velocity, and deflection of the sandwich cylindrical shell are investigated. The critical angular velocity of the nanocomposite sandwich cylindrical shell is obtained. The results show that the mechanical properties, e.g., Young’s modulus and thermal expansion coefficient, for the carbon nanotube and matrix are functions of temperature, and the magnitude of the critical angular velocity can be adjusted by changing the applied voltage.  相似文献   

16.
王宇  谷月  李昌  韩清鹏 《力学与实践》2015,37(3):344-349
基于薄壳理论和黏弹性理论, 得出了黏弹性层合悬臂薄壁圆柱壳模态特性的半解析解. 根据乐甫薄壳理论, 建立了基层和黏弹性阻尼层薄壁圆柱壳的一阶状态微分方程, 结合黏弹性阻尼层的变形协调关系和层间作用力关系, 利用传递矩阵法得出了整体结构的传递矩阵, 采用高精度的精细积分法得出了固有频率、模态损耗因子和三维模态振型, 最后通过有限元法进行了比较, 通过算例验证了传递矩阵法对黏弹性层合薄壁圆柱壳模态特性研究的有效性.  相似文献   

17.
This paper focuses on the free vibration analysis of thick, rotating laminated composite conical shells with different boundary conditions based on the three-dimensional theory, using the layerwise differential quadrature method (LW-DQM). The equations of motion are derived applying the Hamilton’s principle. In order to accurately account for the thickness effects, the layerwise theory is used to discretize the equations of motion and the related boundary conditions through the thickness of the shells. Then, the equations of motion as well as the boundary condition equations are transformed into a set of algebraic equation applying the DQM in the meridional direction. This study demonstrates the applicability, accuracy, stability and the fast rate of convergence of the present method, for free vibration analyses of rotating thick laminated conical shells. The presented results are compared with those of other shell theories obtained using conventional methods and a special case where the angle of the conical shell approaches zero, that is, a cylindrical shell and excellent agreements are achieved.  相似文献   

18.
Whether the first-order and Reddy third-order shear deformation shell theories are able to evaluate the vibroacoustic responses of laminated cylindrical shells with normal deformation in the high frequency range or not is examined by comparison with a 3D higher-order shear deformation shell theory. The implicit governing equations of arbitrary angle-ply laminated cylindrical shells are derived from the 3D higher-order and Reddy third-order shell theories, and solved on the basis of the Fourier transform. The Reddy third-order shell theory can be obtained as a special case from the 3D higher-order shell theory. The first-order and Reddy third-order shell theories almost give rise to the same vibrational and acoustic results. These two simple shear deformation shell theories can be used to study far-field acoustic radiation from laminated cylindrical shells from the low to high frequency range, but they show some differences from the 3D higher-order shell theory in high frequency vibration of shells. Nevertheless, the differences of vibrational responses seem not to be distinct. The helical wave spectra of the higher-order radial displacements are nearly separate from those of the low-order radial displacement and play a minor role in far-field acoustic radiation, which makes the two simple shell theories applicable in prediction of acoustic power of the cylindrical shells in the much higher frequency range. Moreover, it also results in the fact that far-field sound is least sensitive in comparison with near-field sound and vibration of shells.  相似文献   

19.
A method to study dynamical instability and non-linear parametric vibrations of symmetrically laminated plates of complex shapes and having different cutouts is proposed. The first-order shear deformation theory (FSDT) and the classical plate theory (CPT) are used to formulate a mathematical statement of the given problem. The presence of cutouts essentially complicates the solution of buckling problem, since the stress field is non-uniform. At first, a plane stress analysis is carried out using the variational Ritz method and the R-functions theory. The obtained results are applied to investigate buckling and parametric vibrations of laminated plates. The developed method uses the R-functions theory, and it may be directly employed to study laminated plates of arbitrary forms and different boundary conditions. Besides, the proposed method is numerical-analytical, what greatly facilitates a solution of similar-like non-linear problems. In order to show the advantage of the developed approach, instability zones and response curves for the layered cross- and angle-ply plates with external cutouts are constructed and discussed.  相似文献   

20.
In this paper, the large-amplitude (geometrically nonlinear) vibrations of rotating, laminated composite circular cylindrical shells subjected to radial harmonic excitation in the neighborhood of the lowest resonances are investigated. Nonlinearities due to large-amplitude shell motion are considered using the Donnell’s nonlinear shallow-shell theory, with account taken of the effect of viscous structure damping. The dynamic Young’s modulus which varies with vibrational frequency of the laminated composite shell is considered. An improved nonlinear model, which needs not to introduce the Airy stress function, is employed to study the nonlinear forced vibrations of the present shells. The system is discretized by Galerkin’s method while a model involving two degrees of freedom, allowing for the traveling wave response of the shell, is adopted. The method of harmonic balance is applied to study the forced vibration responses of the two-degrees-of-freedom system. The stability of analytical steady-state solutions is analyzed. Results obtained with analytical method are compared with numerical simulation. The agreement between them bespeaks the validity of the method developed in this paper. The effects of rotating speed and some other parameters on the nonlinear dynamic response of the system are also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号