首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, computational fluid dynamics (CFD) is used to investigate inspiratory and expiratory airflow characteristics in the human upper respiratory tract for the purpose of identifying the probable locations of particle deposition and the wall injury. Computed tomography (CT) scan data was used to reconstruct a three dimensional respiratory tract from trachea to first generation bronchi. To compare, a simplified model of respiratory tract based on Weibel was also used in the study. The steady state results are obtained for an airflow rate of 45 L/min, corresponding to the heavy breathing condition. The velocity distribution, wall shear stress, static pressure and particle deposition are compared for inspiratory flows in simplified and realistic models and expiratory flows in realistic model only. The results show that the location of cartilaginous rings is susceptible to wall injury and local particle deposition.  相似文献   

2.
We investigated the deposition pattern of microparticles with different particle diameters, shape factors, and initial flow conditions in a realistic human upper respiratory tract model. We identified a close relationship between the deposition fraction and the particle shape factor. The deposition fraction of the particles decreased sharply with increasing particle shape factor because of the decreasing drag force. We also found that the deposition varied at different positions in the upper respiratory tract. At low shape factors, the highest fraction of particles deposited at the mouth and pharynx. However, with increasing shape factor, the deposition fraction in the trachea and lungs increased. Moreover, for a given shape factor, larger particles deposited at the mouth and pharynx, which indicates that the deposition fraction of microparticles in the human upper respiratory tract is affected first and foremost by particle inertia as well as by the drag force.  相似文献   

3.
对3名伴有鼻阻塞的OSAHS患者术前术后的上气道结构包含软腭组织进行三维重构,采用数值模拟的方法研究这3名患者手术前后,上气道气流分布以及软腭的运动情况,分析鼻腔手术对OSAHS患者的治疗效果.3名患者手术后鼻腔通气程度均得已改善.两名轻度OSAHS患者手术后上气道阻力减小,软腭位移均比术前减小,这些变化均有助于缓减呼吸时气流受限情况.而第3名重度患者手术后上气道阻力和软腭位移反而增加,这将会进一步加重气道的阻塞程度.鼻部手术对OSAHS患者的治疗效果取决于上游鼻腔通气程度的改善能否对下游咽腔产生有益的影响.数值模拟结果与PSG监测结果及其主诉情况相符,与现阶段临床有关的研究结论相一致,能够间接反映术后气道通气程度以及打鼾症状是否改善,为进一步解决临床的疑难问题提供了理论依据.  相似文献   

4.
An more reliable human upper respiratory tract model that consisted of an oropharynx and four generations of asymmetric tracheo-bronchial (TB) airways has been constructed to investigate the micro-particle deposition pattern and mass distribution in five lobes under steady inspiratory condition in former work by Huang and Zhang (2011). In the present work, transient airflow patterns and particle deposition during both inspiratory and expiratory processes were numerically simulated in the realistic human upper respiratory tract model with 14 cartilaginous rings (CRs) in the tracheal tube. The present model was validated under steady inspiratory flow rates by comparing current results with the theoretical models and published experimental data. The transient deposition fraction was found to strongly depend on breathing flow rate and particle diameter but slightly on turbulence intensity. Particles were mainly distributed in the high axial speed zones and traveled basically following the secondary flow. “Hot spots” of deposition were found in the lower portion of mouth cavity and posterior wall of pharynx/larynx during inspiration, but transferred to upper portion of mouth and interior wall of pharynx/larynx during expiration. The deposition fraction in the trachea during expiration was found to be much higher than that during inspiration because of the stronger secondary flow.  相似文献   

5.
A representative human upper respiratory tract (URT) with idealized oral region and asymmetric tracheo-bronchial (TB) airway has been modeled, and laminar-to-turbulent airflow for typical inhalation modes as well as micro-particle transport and deposition has been simulated using CFX10.0 software from Ansys Inc. on a personal computer. The asymmetric TB airway could not be replaced by an extended straight tube as outlet of the oral region while investigating the tracheal airflow field and particle depositio...  相似文献   

6.
Obstructive sleep apnea (OSA) is a medical condition characterized by repetitive partial or complete occlusion of the airway during sleep. The soft tissues in the airway of OSA patients are prone to collapse under the low-pressure loads incurred during breathing. This paper describes efforts toward the development of a numerical tool for simulation of air–tissue interactions in the upper airway of patients with sleep apnea. A procedure by which patient-specific airway geometries are segmented and processed from dental cone-beam CT scans into signed distance fields is presented. A sharp-interface embedded boundary method based on the signed distance field is used on Cartesian grids for resolving the airflow in the airway geometries. For simulation of structure mechanics with large expected displacements, a cut-cell finite element method with nonlinear Green strains is used. The fluid and structure solvers are strongly coupled with a partitioned iterative algorithm. Preliminary results are shown for flow simulation inside the three-dimensional rigid upper airway of patients with obstructive sleep apnea. Two validation cases for the fluid–structure coupling problem are also presented.  相似文献   

7.
8.
In the present study, we reconstructed upper airway and soft palate models of 3 obstructive sleep apnea-hypopnea syndrome(OSAHS) patients with nasal obstruction. The airflow distribution and movement of the soft palate before and after surgery were described by a numerical simulation method. The curative effect of nasal surgery was evaluated for the three patients with OSAHS. The degree of nasal obstruction in the 3 patients was improved after surgery. For 2 patients with mild OSAHS, the upper airway resistance and soft palate displacement were reduced after surgery. These changes contributed to the mitigation of respiratory airflow limitation. For the patient with severe OSAHS, the upper airway resistance and soft palate displacement increased after surgery, which aggravated the airway obstruction. The effcacy of nasal surgery for patients with OSAHS is determined by the degree of improvement in nasal obstruction and whether the effects on the pharynx are beneficial. Numerical simulation results are consistent with the polysomnogram(PSG) test results, chief complaints, and clinical findings, and can indirectly reflect the degree of nasal patency and improvement of snoring symptoms, and further,provide a theoretical basis to solve relevant clinical problems.  相似文献   

9.
Fluid–structure interaction in a simplified 2D model of the upper airways is simulated to study flow-induced oscillation of the soft palate in the pharynx. The goal of our research has been a better understanding of the mechanisms of the Obstructive Sleep Apnea Syndrome and snoring by taking into account compressible viscous flow. The inspiratory airflow is described by the 2D compressible Navier–Stokes equations, and the soft palate is modeled as a flexible plate by the linearized Euler–Bernoulli thin beam theory. Fluid–structure interaction is handled by the arbitrary Lagrangian–Eulerian formulation. The fluid flow is computed by utilizing 4th order accurate summation by parts difference operators and the 4th order accurate classical Runge–Kutta method which lead to very accurate simulation results. The motion of the cantilevered plate is solved numerically by employing the Newmark time integration method. The numerical schemes for the structure are verified by comparing the computed frequencies of plate oscillation with the associated second mode eigenfrequency in vacuum. Vortex dynamics is assessed for the coupled fluid–structure system when both airways are open and when one airway is closed. The effect of mass ratio, rigidity and damping coefficient of the plate on the oscillatory behavior is investigated. An acoustic analysis is carried out to characterize the acoustic wave propagation induced by the plate oscillation. It is observed that the acoustic wave corresponding to the quarter wave mode along the length of the duct is the dominant frequency. However, the frequency of the plate oscillation is recognizable in the acoustic pressure when reducing the amplitude of the quarter wave mode.  相似文献   

10.
In this experimental study a thorough analysis of the steady and unsteady flow field in a realistic transparent silicone lung model of the first bifurcation of the upper human airways will be presented. To determine the temporal evolution of the flow time-resolved particle-image velocimetry recordings were performed for a Womersley number range 3.3 ≤ α ≤ 5.8 and Reynolds numbers of Re D = 1,050, 1,400, and 2,100. The results evidence a highly three-dimensional and asymmetric character of the velocity field in the upper human airways, in which the influence of the asymmetric geometry of the realistic lung model plays a significant role for the development of the flow field in the respiratory system. At steady inspiration, the flow shows independent of the Reynolds number a large zone with embedded counter-rotating vortices in the left bronchia ensuring a continuous streamwise transport into the lung. At unsteady flow the critical Reynolds number, which describes the onset of vortices in the first bifurcation, is increased at higher Womersley number and decreased at higher Reynolds number. At expiration the unsteady and steady flows are almost alike.  相似文献   

11.
In this paper, the authors present airflow field characteristics of human upper airway and soft palate movement attitude during breathing. On the basis of the data taken from the spiral computerized tomography images of a healthy person and a patient with Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS), three-dimensional models of upper airway cavity and soft palate are reconstructed by the method of surface rendering. Numerical simulation is performed for airflow in the upper airway and displacement of soft palate by fluid-structure interaction analysis. The reconstructed three-dimensional models precisely preserve the original configuration of upper airways and soft palate. The results of the pressure and velocity distributions in the airflow field are quantitatively determined, and the displacement of soft palate is presented. Pressure gradients of airway are lower for the healthy person and the airflow distribution is quite uniform in the case of free breathing. However, the OSAHS patient remarkably escalates both the pressure and velocity in the upper airway, and causes higher displacement of the soft palate. The present study is useful in revealing pathogenesis and quantitative mutual relationship between configuration and function of the upper airway as well as in diagnosing diseases related to anatomical structure and function of the upper airway. The project supported by the National Natural Science Foundation of China (10672036, 10472025 and 10421002), the Natural Science Foundation of Liaoning Province (20032109). English text was polished by Yunming Chen.  相似文献   

12.
人体上肢运动学动力学建模与仿真技术的研究   总被引:2,自引:0,他引:2  
根据多体动力学原理,以人体解剖学为基础,对人体上肢进行建模,推导了其动力学和运动学方程,建立了人体上肢四刚体四自由度动力学模型,运用多系统动力学软件ADAMS,结合UG建模功能,对人体上肢动力学和运动学特性进行了分析计算,对人体上肢收臂翻掌过程的运动进行了仿真,并将计算结果与实测数据进行了对比,验证了模型的正确性和有效性。  相似文献   

13.
 Recently two different methods were used to simulate the stationary properties of polymer brushes under strong shear: stochastic dynamics of a multi-chain brush model, and self-consistent Brownian dynamics of a one-chain model. The former explicitly describes volume interactions (VI) between polymer segments but does not take into account hydrodynamic interactions (HI) inside the brush. In the latter the self-consistent molecular field method has been chosen to calculate VI, and HI were accounted for using the Brinkman equation. Despite a significant difference between models a collapse of the brush under shear was observed in both studies. In particular, the density profile changes from parabolic to step-like and the free ends of the chains become concentrated in a narrow region at the periphery of the brush. However, when HI are taken into account much higher shear rates are necessary to attain the same brush deformation because the shear flow only slightly penetrates into the brush in contrast to the free-draining case. The inner brush structure is also found to be different for the two models. In the first model all chains are inclined approximately at the same angle when shear is applied. In the second model chains with the free ends found in the inner sublayer of the brush do not feel the flow at all whereas those in the upper sublayer are stretched and inclined by the flow. Received: 24 June 1999 Accepted: 8 February 2000  相似文献   

14.
A high-order immersed boundary method is devised for the compressible Navier-Stokes equations by employing high-order summation-by-parts difference operators. The immersed boundaries are treated as sharp interfaces by enforcing the solid wall boundary conditions via flow variables at ghost points. Two different interpolation schemes are tested to compute values at the ghost points and a hybrid treatment is used. The first method provides the bilinearly interpolated flow variables at the image points of the corresponding ghost points and the second method applies the boundary condition at the immersed boundary by using the weighted least squares method with high-order polynomials. The approach is verified and validated for compressible flow past a circular cylinder at moderate Reynolds numbers. The tonal sound generated by vortex shedding from a circular cylinder is also investigated. In order to demonstrate the capability of the solver to handle complex geometries in practical cases, flow in a cross-section of a human upper airway is simulated.  相似文献   

15.
Numerical and experimental techniques are used to model the flow and pressure distribution around the forebody of the HYFLEX hypersonic flight vehicle. We compare numerical simulation results with modified Newtonian theory and flight data to determine the accuracy of the computational fluid dynamics (CFD) technique used. The numerical simulations closely match the trends in flight data, and show that real gas effects have a small but significant influence on the nose pressure distribution. We also present pressure results from a scale-model tested in a shock tunnel, and compare them with simulation results. For the shock tunnel experiment, the model was placed such that part of the upper surface was in a region of the test flow where nonuniformities were significant, and it was shown that the numerical simulation could adequately capture these experimental flow features. The binary scaling parameter (describing the similarity in species dissociation between flight and model) was used to design the scale-model tests in the shock tunnel, and its effectiveness is discussed. We find that matching the flight Mach number in the shock tunnel experiment is not critical for reproducing flight pressure data, so long as flight velocity is matched, and binary scaling is maintained. Received 11 June 1998 / Accepted 1 September 1998  相似文献   

16.
A computational fluid dynamics (CFD) analysis was conducted to study the unsteady aerodynamics of a virtual flying bumblebee during hovering flight. The integrated geometry of bumblebee was established to define the shape of a three‐dimensional virtual bumblebee model with beating its wings, accurately mimicking the three‐dimensional movements of wings during hovering flight. The kinematics data of wings documented from the measurement to the bumblebee in normal hovering flight aided by the high‐speed video. The Navier–Stokes equations are solved numerically. The solution provides the flow and pressure fields, from which the aerodynamic forces and vorticity wake structure are obtained. Insights into the unsteady aerodynamic force generation process are gained from the force and flow‐structure information. The CFD analysis has established an overall understanding of the viscous and unsteady flow around the virtual flying bumblebee and of the time course of instantaneous force production, which reveals that hovering flight is dominated by the unsteady aerodynamics of both the instantaneous dynamics and also the past history of the wing. A coherent leading‐edge vortex with axial flow and the attached wingtip vortex and trailing edge vortex were detected. The leading edge vortex, wing tip vortex and trailing edge vortex, which caused by the pressure difference between the upper and the lower surface of wings. The axial flow, which include the spanwise flow and chordwise flow, is derived from the spanwise pressure gradient and chordwise pressure gradient, will stabilize the vortex and gives it a characteristic spiral conical shape. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
This study investigates the flow past a confined circular cylinder built into a narrow rectangular duct with a Reynolds number range of 1,500 ≤ Re d ≤ 6,150, by employing the particle image velocimetry technique. In order to better explain the 3-D flow behaviour in the juncture regions of the lower and upper plates and the cylinder, respectively, as well as the dynamics of the horseshoe vortex system, both time-averaged and instantaneous flow data are presented for regions upstream and downstream of the cylinder. The size, intensity and interaction of the vortex systems vary substantially with the Reynolds number. Although the narrow rectangular duct with a single built-in cylinder is a geometrically symmetrical arrrangement, instantaneous flow data have revealed that the flow structures in both the lower and upper plate–cylinder junction regions are not symmetrical with respect to the centreline of the flow passage. The vortical flow structures obtained in side-view planes become dominant sometimes in the lower juncture region and sometimes in the upper juncture region in unsteady mode.  相似文献   

18.
Pulsatile flow in a channel with sudden expansion and contraction, referred to as a closed-type cavity, is experimentally and numerically investigated in the range of Re = 50–1650, covering laminar and transitional flow regimes. Investigations are performed in the range of pulsation frequencies corresponding to Wo = 0.28–0.62 and at a constant pulsation amplitude. Pulsation frequency influence to time-averaged recirculation zone length and the development of recirculation zone as well as upper and corner eddies during the pulse cycle at different pulsation frequencies are investigated. A fixed amplitude from zero to maximum velocity is chosen to investigate flow behaviour throughout a whole pulsation cycle. The results show that the pulsation effect on the recirculation zone length is insignificant in the laminar flow regime at investigated frequencies. However, in the transitional flow regime, recirculation zone length was shortened, regardless of the Wo. The analysis of recirculation zone and upper eddy dynamics during the pulse cycle revealed that their growth rate depends on Wo. The development lag effect is observed at certain velocity phase angles. The analysis of shear rate and turbulence intensity profiles revealed that increased instabilities are determined by the interaction of recirculation zone, upper eddy and the forward-facing step during the pulse cycle.  相似文献   

19.
The flow around a circular cylinder at Reynolds number of 1.4 × 105 is examined with Reynolds-Averaged Navier–Stokes equations (RANS) and Scale-Resolving Simulation (SRS) methods. Such problem is in the upper limit of the flow regime where turbulent transition occurs in the free shear-layers and so the flow dynamics is dominated by the spatial development of vortex-shedding structure, and in particular by the Kelvin–Helmholtz rollers and turbulence onset. The objectives of this investigation are threefold: (i) determine the aptitude of distinct RANS and SRS models to simulate the correct flow regime; (ii) compare the predictions of selected methods with available experimental measurements; and (iii) examine key modelling and flow features that contribute to the observed results. The evaluated models range from RANS supplemented with linear, transition, and non-linear turbulent viscosity closures, to hybrid and bridging SRS methods. Bridging computations are conducted at various constant degrees of physical resolution (range of resolved scales). The results illustrate the complexity of predicting the present flow problem. It is shown that RANS and SRS formulations modelling turbulence in boundary-layers with the selected linear turbulent viscosity closures lead to a premature onset of turbulence which alters the flow regime of the simulations. Although the transition and non-linear RANS closures can predict the correct flow regime, the outcome of this study indicates that solely the bridging model at constant physical resolution is able to achieve an accurate and physics-based prediction of the flow dynamics. Nonetheless, the necessary degree of physical resolution makes the numerical requisites of such computations demanding.  相似文献   

20.
This paper presents an experimental and numerical investigation on the natural convection flow in a cylindrical model hydrothermal reactor. The flow is visualized non-intrusively and simulated with a conjugate computational model. Results show that the flow structure consists of wall layers and core flows. In the lower half, the flows are steady due to the porous media. The three-dimensional unsteady upper core flow is driven by the streams originated from the wall layer collision. The thermal condition in the upper half core region is mainly determined by the total heat flow rate specified on the lower sidewall; while the variations of porous media parameters, in the normal range for hydrothermal crystal growth process, have minor effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号