首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Measurements of mean velocity and turbulent quantities have been carried out when the wake of a symmetrical airfoil interacts with the boundary layer on the (i) walls of a straight duct/diffuser and (ii) convex and concave walls of a curved duct/diffuser. The effects of adverse pressure gradient and of curvatures on the interaction are studied separately and in combination. Six cases are considered, viz. with (i) neither pressure gradient nor curvature, (ii) adverse pressure gradient and no curvature, (iii) and (iv) convex curvature with zero and adverse pressure gradients, respectively, (v) and (vi) concave curvature with zero and adverse pressure gradients, respectively. For the flows with curvature, the curvature parameter δ/R is 0.023, and for the flows with adverse pressure gradient, the Clauser pressure gradient parameter β is 0.62. The individual influences of adverse pressure gradient and convex and concave curvatures on the boundary layer are similar to those observed by earlier investigations. It is further observed that the combined effect of concave/convex curvature and the adverse pressure gradient causes higher turbulence intensities than the sum of the individual effects. The effect of curvature is to make the wake asymmetric, and in combination with adverse pressure gradient the asymmetry increases. It is observed that the adverse pressure gradient causes faster wake–boundary-layer interaction. Comparing measurements in a straight duct, a curved duct, a curved diffuser and a straight diffuser, it is seen that the convex curvature reduces the boundary layer thickness. The asymmetry in wake development compensates for this effect and the wake–boundary-layer interaction on a convex surface is almost the same as that on a straight surface. In the case of interaction with the boundary layer on a concave surface, the curvature increases the boundary layer thickness and causes enhanced turbulence intensities. However, the asymmetry in wake is such that the extent of wake is lower towards the boundary layer side. As a result, the wake–boundary-layer interaction on concave surface is almost the same as on a straight surface. The interaction is faster in the presence of adverse pressure gradient. Received: 16 June 2000 / Accepted: 17 May 2001  相似文献   

2.
Measurements of mean and turbulence quantities are presented for a curved wake of an airfoil. The wake is generated by placing a NACA 0012 airfoil of 0.150 m chord length at one chord length upstream of a 90° bend. The bend has a square cross-section of 0.457 m × 0.457 m, a mean radius-to-height ratio of R/H=1.17, and concave and convex radii of curvature 0.764 and 0.307 m, respectively. In addition to streamwise curvature, the wake is subjected to varying streamwise and radial pressure. The measurements were carried out at mainstream air velocities of 10, 15 and 20 m/s. The results are presented for the mean streamwise velocity, five components of turbulence stresses, the calculated wake half-width and the maximum velocity defect. The results showed the formation of an asymmetric wake about the wake centreline, with a larger wake half-width on the inner side. The wake half-width on both inner side and outer side of the wake decrease with mainstream velocity, whereas the maximum velocity defect, turbulence stresses increase with mainstream velocity. The turbulence stresses are enhanced on the inner side but suppressed on the outer side.  相似文献   

3.
Experimental data on the development of an aerofoil wake in a curved stream are compared with calculations based on the k-ε model of turbulence with standard constants and with the model constant Cμ dependent on the local curvature. The mean velocity profile is asymmetric, the half-width of the wake is more on the inner side of the curved duct than on the outer side, and the turbulent shear stress decreases rapidly on the outer side. The standard k-ε model is able to satisfactorily reproduce this behaviour. Making Cμ dependent on the local radius improves the agreement on the inner side but slightly worsens it on the outer side.  相似文献   

4.
In the wake of a rectangular cylinder measurements of mean velocity and some turbulent stresses are carried out in a straight duct and in a curved duct. The difference in turbulent quantities in the wake of the body, in the straight duct an in the curved duct is significant especially in the downstream side of the wake. The shear stresses are more sensitive to curvature than the normal stresses.  相似文献   

5.
The open equations of thermal turbulent boundary layer subjected to pressure gradient have been analysed by method of matched asymptotic expansions at large Reynolds number. The flow is divided into outer wake layer and inner wall layer. The asymptotic expansions are matched by Millikan-Kolmogorov hypothesis. The temperature profile in overlap region yields composite law which reduce to log. law for moderate pressure gradient and inverse half power law for strong adverse pressure gradient. In case of a shallow thermal wake, the matching result of outer wake layer reduces to composite temperature defect law, which is more general than the classical log. law. The comparison of data for thermal boundary layer with strong adverse pressure gradient is also considered. Received on 26 May 1998  相似文献   

6.
Curved channels are ubiquitous in microfluidic systems. The pressuredriven electrokinetic flow and energy conversion in a curved microtube are investigated analytically by using a perturbation analysis method under the assumptions of the small curvature ratio and the Reynolds number. The results indicate that the curvature of the microtube leads to a skewed pattern in the distribution of the electrical double layer (EDL) potential. The EDL potential at the outer side of the bend is larger than that at the inner side of the bend. The curvature shows an inhibitory effect on the magnitude of the streaming potential field induced by the pressure-driven flow. Since the spanwise pressure gradient is dominant over the inertial force, the resulting axial velocity profile is skewed into the inner region of the curved channel. Furthermore, the flow rate in a curved microtube could be larger than that in a straight one with the same pressure gradient and shape of cross section. The asymptotic solutions of the axial velocity and flow rate in the absence of the electrokinetic effect are in agreement with the classical results for low Reynolds number flows. Remarkably, the curved geometry could be beneficial to improving the electrokinetic energy conversion (EKEC) efficiency.  相似文献   

7.
The development of steady, turbulent flow in a 90° section of a curved square duct was studied at a Reynolds number of 4 × 104 by hot-wire anemometer. The curved duct has a cross-section measuring 80 × 80 mm and a curvature radius ratio of 4 and is connected with a long, straight duct at its both ends. The longitudinal and lateral components of mean and fluctuating velocities, and the Reynolds stresses were measured by the method of rotating a probe with an inclined hot-wire. The velocity fields of the primary and secondary flows, and the Reynolds stress distributions in the cross-section were illustrated in the form of contour map. The development of the primary flow was found to be connected with a strong pressure gradient near the outer and inner wall and a secondary flow induced in the cross-section of the bend by a pressure difference between the outer and inner wall and a centrifugal force acting on the fluid; the fluid is accelerated near the inner wall and decelerated near the outer wall between the bend angle ϕ ≅ 0° and ϕ ≅ 30°, but an increase and decrease of the fluid velocity are reversed between ϕ ≅ 30° and ϕ ≅ 90°. The fluctuating velocity correlations, i.e. the Reynolds stresses follow a complicated progress according to the complex development of the primary flow. The results obtained can be available to verify various types of turbulence models and to develop new models. Received: 10 May 1999/Accepted: 15 March 2000  相似文献   

8.
An adjoint optimization method is utilized to design an inviscid outer wall shape required for a turbulent flow field solution of the So–Mellor convex curved wall experiment using the Navier–Stokes equations. The associated cost function is the desired pressure distribution on the inner wall. Using this optimized wall shape with a Navier–Stokes method, the abilities of various turbulence models to simulate the effects of curvature without the complicating factor of streamwise pressure gradient are evaluated. The one-equation Spalart–Allmaras (SA) turbulence model overpredicts eddy viscosity, and its boundary layer profiles are too full. A curvature-corrected version of this model improves results, which are sensitive to the choice of a particular constant. An explicit algebraic stress model does a reasonable job predicting this flow field. However, results can be slightly improved by modifying the assumption on anisotropy equilibrium in the model's derivation. The resulting curvature-corrected explicit algebraic stress model (EASM) possesses no heuristic functions or additional constants. It slightly lowers the computed skin friction coefficient and the turbulent stress levels for this case, in better agreement with experiment. The effect on computed velocity profiles is minimal.  相似文献   

9.
The pressure driven, fully developed turbulent flow of incompressible viscous fluid (water) in 120° curved ducts of rectangular cross-section is investigated experimentally and numerically. Three different types of curved duct (A-CL, B-SL and C-IL) with continuously varying curvature conform to blade profile as the inner and outer curvature walls to simplify and guide the impeller design of pumps. After validating the numerical method against Particle Image Velocimetry (PIV) measurements, the flow development in the ducts is analyzed in detail by Computational Fluid Dynamics (CFD) for a wide range of Reynolds numbers (Re = 2.4 × 104–1.4 × 105) and aspect ratios (Ar > 1.0, =1.0 and <1.0). The results clearly depict the existence of multiple Dean vortices along the duct: while the axial velocity profile is more related to an inner Dean vortex (called split base vortex), the wall pressure is more influenced by the Dean vortex attached to the inner curvature wall (called ICW Dean vortex). The induced multiple Dean vortices and the secondary flow patterns in the duct cannot be faithfully predicted by using traditional techniques. Therefore, a new criterion based on the vortex core velocities is proposed. With this approach, the effects of Re, Cr and Ar on the Dean instabilities in curved ducts are carefully studied. Decreasing Re promotes the generation of Dean vortices closer to the duct inlet, a trend that is as opposed to laminar flow. In addition, a new pair of vortices called entrainment Dean vortex occurs near the outlet of the curved duct with Ar = 1.0, which has not been previously reported in the literature.  相似文献   

10.
The S-shaped diffuser which connects the exit of the compressor to the inlet of the combustion chamber of the Allison 250 gas turbine has been investigated using the Shear-Stress Transport turbulence model (SST) and the commercial code ANSYS-CFX. The diffuser geometry includes an initial conical diffuser which smoothly transitions into a constant cross-section S-duct. The numerical model and setup were validated using both in-house processed experimental data and experimental data from the literature on a similar geometry. The stream-wise velocity profile was observed to flatten in the initial divergent section, and then the region of the flow with the highest velocity is pushed toward the outer surface of the first bend, with a secondary-flow in the plane of the cross-section. This distortion of the stream-wise velocity intensified when the inlet turbulence intensity was decreased or when the Reynolds number was increased. An increase of the Reynolds number also translated into higher static pressure recovery potential and lower wall friction coefficients. Six variations of the diffuser geometry were considered, all having the same total cross-sectional area ratio and centreline offset. The qualitative results were the same as those of the Allison 250 diffuser, but unlike the base geometry, all the considered variants showed separated-flow regions (and reversed-flow regions in some cases) of different sizes and at different locations. The performance indicators for the Allison 250 S-shaped diffuser were the highest overall. Most interestingly, the current duct geometry outperformed its variant with a cross-sectional area expansion extending over its entire length, which is the most common inlet duct configuration.  相似文献   

11.
Without simplifying the N-S equations of Germano's[5], we study the flow in a helical circular pipe employing perturbation method. A third perturbation solution is fully presented. The first- second- and third-order effects of curvature κ and torsion τ on the secondary flow and axial velocity are discussed in detail. The first-order effect of curvature is to form two counter-rotating cells of the secondary flow and to push the maximum axial velocity to the outer bend. The two cells are pushed to the outer bend by the pure second-order effect of curvature. The combined higher-order (second-, third-) effects of curvature and torsion, are found to be an enlargement of the lower vortex of the secondary flow at expense of the upper one and a clockwise shift of the centers of the secondary vortices and the location of maximum axial velocity. When the axial pressure gradient is small enough or the torsion is sufficiently larger than the curvature, the location of the maximal axial velocity is near the inner bend. The equation of the volume flux is obtained from integrating the perturbation solutions of axial velocity. From the equation the validity range of the perturbation solutions in this paper can be obtained and the conclusion that the three terms of torsion have no effect on the volume flux can easily be drawn. When the axial pressure gradient is less than 22.67, the volume flux in a helical pipe is larger than that in a straight pipe.  相似文献   

12.
利用两相湍流KET模型对90°弯管内气固两相湍流流动进行了数值模拟,得到了弯管内两相流动的一些规律,并提出用颗粒动理学压力来定性表征弯管内磨损严重部位,为管道抗磨损设计提供了一定的理论依据。  相似文献   

13.
Particulate dispersion in an S-shaped duct, with periodicity between inlet and exit, is studied by direct numerical simulation. Stokes numbers range from 0.125 to 6.0. In a straight, turbulent channel flow, eddies are responsible for particulate impact. Turbophoresis causes a mean drift toward the wall. In a curved channel, particle inertia can be the dominant cause of impact. Above the lowest Stokes number, particles form into a plume that leaves the inner bend and flows toward the outer wall. Turbulence then disperses the plume. Heavier particles cross the bend and reflect from the outer wall, forming a high concentration layer near the surface. The heaviest particles reflect again from the wall and are dispersed across the duct by turbulence. An empirical formula is used to analyze the propensity for particle impacts to erode the wall. The region of maximum erosion is not the region of maximum number of impacts, nor is it where the impact velocity is highest: the impact angle determines where erosion is largest.  相似文献   

14.
The Dorodnitsyn finite element method for turbulent boundary layer flow with surface mass transfer is extended to include axisymmetric swirling internal boundary layer flow. Turbulence effects are represented by the two-layer eddy viscosity model of Cebeci and Smith1 with extensions to allow for the effect of swirl. The method is applied to duct entry flow and a 10 degree included-angle conical diffuser, and produces results in close agreement with experimental measurements with only 11 grid points across the boundary layer. The introduction of swirl (we/ue = 0.4) is found to have little effect on the axial skin friction in either a slightly favourable or adverse pressure gradient, but does cause an increase in the displacement area for an adverse pressure gradient. Surface mass transfer (blowing or suction) causes a substantial reduction (blowing) in axial skin friction and an increase in the displacement area. Both suction and the adverse pressure gradient have little influence on the circumferential velocity and shear stress components. Consequently in an adverse pressure gradient the flow direction adjacent to the wall is expected to approach the circumferential direction at some downstream location.  相似文献   

15.
The paper contains the results of extensive single-point hot-wire and resistance-thermometer measurements in a wall jet on a heated concave wall with an external free stream. It is found that the turbulence in the inner (wall) and outer layers is sensitive to the distortion produced by the curved wall, broadly confirming current views of these effects. The effect on the turbulence of streamline curvature is stabilising in the outer layer, destabilising in the inner. Consequently the point of zero shear stress is closer to the point of maximum mean velocity than in flat and convex wall jets with which these new results are compared. The rate of growth is about 80% of that of the equivalent flat wall flow, and about half that of the convex wall flow. Changes in the wall shear stress and heat flux, which are increased relative to the flat wall flow, are significant but less than the changes in the corresponding convex wall flow. The greatest changes occur in the triple products.  相似文献   

16.
Detailed flow measurements at the inlet of a centrifugal compressor vaneless diffuser are presented. The mean 3-d velocities and six Reynolds stress components tensor are used to determine the turbulence production terms which lead to total pressure loss. High levels of turbulence kinetic energy were observed in both the blade and passage wakes, but these were only associated with high Reynolds stresses in the blade wakes. For this reason the blade wakes mixed out rapidly, whereas the passage wake maintained its size, but was redistributed across the full length of the shroud wall. Peak levels of Reynolds stress occurred in regions of high velocity shear and streamline curvature which would tend to destabilize the shear gradient. Four regions in the flow are identified as potential sources of loss - the blade wake, the shear layers between passage wake and jet, the thickened hub boundary layer and the interaction region between the secondary flow within the blade wake and the passage vortex. The blade wakes generate most turbulence, with smaller contributions from the hub boundary layer and secondary flows, but no significant contribution is apparent from the passage wake shear layers.  相似文献   

17.
A turbulent separation-reattachment flow in a two-dimensional asymmetrical curved-wall diffuser is studied by a two-dimensional laser doppler velocimeter. The turbulent boundary layer separates on the lower curved wall under strong pressure gradient and then reattaches on a parallel channel. At the inlet of the diffuser, Reynolds number based on the diffuser height is 1.2×105 and the velocity is 25.2m/s. The results of experiments are presented and analyzed in new defined streamline-aligned coordinates. The experiment shows that after Transitory Detachment Reynolds shear stress is negative in the near-wall backflow region. Their characteristics are approximately the same as in simple turbulent shear layers near the maximum Reynolds shear stress. A scale is formed using the maximum Reynolds shear stresses. It is found that a Reynolds shear stress similarity exists from separation to reattachment and the Schofield-Perry velocity law exists in the forward shear flow. Both profiles are used in the experimental work that leads to the design of a new eddy-viscosity model. The length scale is taken from that developed by Schofield and Perry. The composite velocity scale is formed by the maximum Reynolds shear stress and the Schofield-Perry velocity scale as well as the edge velocity of the boundary layer. The results of these experiments are presented in this paper.  相似文献   

18.
In this paper, a throughflow with swirling inflow in an annular diffuser is calculated. Under the assumption of smallcross-flow, the flow near inner and outer wall surfaces is calculated based on the three-dimensional momentum integral equation of the boundary layer. The potential fiow outside the boundary layer is cornputed by means of the iteration method based on the velocity gradient equation along the quasi-orthogonal direction of the meridional projection of the stream-line on the meridional surface and the constancy of fiux equation. The numerical results agree with the experiments quite well. This method is useful for analyzing the throughfiow with pre-swirl in the annular diffuser.  相似文献   

19.
PIV measurements near a wall are generally difficult due to low seeding density, low velocity, high velocity gradient, and strong reflections. Such problems are often compounded by curved boundaries, which are commonly found in many industrial and medical applications. To systematically solve these problems, this paper presents two novel techniques for near-wall measurement, together named Interfacial PIV, which extracts both wall-shear gradient and near-wall tangential velocity profiles at one-pixel resolution. To deal with curved walls, image strips at a curved wall are stretched into rectangles by means of conformal transformation. To extract the maximal spatial information on the near-wall tangential velocity field, a novel 1D correlation function is performed on each horizontal pixel line of the transformed image template to form a “correlation stack”. This 1D correlation function requires that the wall-normal displacement component of the particles be smaller than the particle image diameter in order to produce a correlation signal. Within the image regions satisfying this condition, the correlation function yields peaks that form a tangential velocity profile. To determine this profile robustly, we propose to integrate gradients of tangential velocity outward from the wall, wherein the gradient at each wall-normal position is measured by fitting a straight line to the correlation peaks. The capability of Interfacial PIV was validated against Particle Image Distortion using synthetic image pairs generated from a DNS velocity field over a sinusoidal bed. Different velocity measurement schemes performed on the same correlation stacks were also demonstrated. The results suggest that Interfacial PIV using line fitting and gradient integration provides the best accuracy of all cases in the measurements of velocity gradient and velocity profile near wall surfaces.  相似文献   

20.
A numerical analysis has been performed for a developing turbulent flow in a rotating U-bend of strong curvature with rib-roughened walls using an anisotropic turbulent model. In this calculation, an algebraic Reynolds stress model is used to precisely predict Reynolds stresses, and a boundary-fitted coordinate system is introduced as a method of coordinate transformation to set the exact boundary conditions along the complicated shape of U-bend with rib-roughened walls. Calculated results for mean velocity and Reynolds stresses are compared to the experimental data in order to validate the proposed numerical method and the algebraic Reynolds stress model. Although agreement is certainly not perfect in all details, the present method can predict characteristic velocity profiles and reproduce the separated flow generated near the outer wall, which is located just downstream of the curved duct. The Reynolds stresses predicted by the proposed turbulent model agree well with the experimental data, except in regions of flow separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号