首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The spatial problems of elasticity are mainly solved in displacements [1, 2], i.e., the Lamé equations are taken as the initial equations. This is related to the lack of general solutions for the system of basic equations of elasticity expressed in stresses. In this connection, a new variational statement of the problem in stresses was developed in [3, 4]; this statement consists in solving six generalized equations of compatibility for six independent components of the stress tensor, while the three equilibrium equations are transferred to the set of boundary conditions. This method is more convenient for the numerical solution of problems in stresses and has been tested when solving various boundary value problems. In the present paper, analyzing the completeness of the Saint-Venant identities and using the Maxwell stress functions, we obtain a new resolving system of three differential equations of strain compatibility for the three desired stress functions φ, ξ, and ψ. This system is an alternative to the three Lamé equilibrium equations for three desired displacement components u, v, w and is simpler in structure. Moreover, both of these systems of resolving equations can be solved by the new recursive-operator method [5, 6]. In contrast to well-known methods for constructing general solutions of linear differential equations and their systems, the solutions obtained by the recursive-operator method are constructed as operator-power series acting on arbitrary analytic functions of real variables (not necessarily harmonic), and the series coefficients are determined from recursive relations (matrix in the case of systems of equations). The arbitrary functions contained in the general solution can be determined directly either from the boundary conditions (the obtained system of inhomogeneous equations with a right-hand side can also be solved by the recursive-operator method [6]) or by choosing them from various classes of analytic functions (elementary, special); a complete set of particular solutions can be obtained in the same function classes, and the coefficients of linear combinations of particular solutions can be determined by the Trefftz method, the least-squares method, and the collocation method.  相似文献   

2.
The Stefan problem of a semi-infinite body with arbitrarily prescribed initial and boundary conditions is studied. One of the objectives of the paper is to investigate the analyticity of the solutions. For this purpose, the prescribed initial and boundary conditions are considered to be series of fractional powers of their arguments. It is found that the exact solutions of the problem for various forms of the initial and boundary conditions can be established in series of parabolic cylinder functions and time t. Existence and convergence of the series solutions are studied and proved. The present solutions include the known exact solutions as special cases. On the basis of the present solutions, the question of the analyticity of solutions of the Stefan problem, raised by Rubinstein in his book, can be answered. Conditions for analyticity of the solutions with various initial and boundary conditions are fully discussed.  相似文献   

3.
The mixed form of the areal groundwater flow equations is solved with a least-squares finite element procedure (LESFEM). Hydraulic head and x- and y-directed fluxes are state variables. Physical parameters and state variables are approximated using a bilinear basis. Grid refinements and irregular domain boundaries are implemented on rectangular meshes. Residuals are constructed at collocation points for conservation of mass and Darcy's law. Boundary condition residuals are constructed at discrete points along the boundary. The residuals are weighted, squared and summed. A set of algebraic equations is formed by taking the derivatives of the weighted sum of the squares of the residuals with respect to each unknown parameter in the approximation for the state variable and setting them to zero. Proper choice of a potential scaling parameter and residual weights is essential for the effective application of the algorithm. Test problem results demonstrate that the method is effective for both transient and steady state cases. The LESFEM algorithm generates a C°-continuous velocity field. The continuous velocity field and the rectangular mesh simplify the implementation of algorithms that require tracking. In addition, rectangular meshes simplify mesh and boundary generation.  相似文献   

4.
In this paper we consider the scattering of a wave from an infinite line source by an infinitely long cylinder C. The line source is parallel to the axis of C, and the cross section C of this cylinder is smooth, closed and convex. C is formed by joining a pair of smooth convex arcs to a circle C0, one on the illuminated side, and one on the dark side, so that C is circular near the points of diffraction. By a rigorous argument we establish the asymptotic behavior of the field at high frequencies, in a certain portion of the shadow S that is determined by the geometry of C in S. The leading term of our asymptotic expansion is the field predicted by the geometrical theory of diffraction.Previous authors have derived asymptotic expansions in the shadow regions of convex bodies in special cases where separation of variables is possible. Others, who have considered more general shapes, have only been able to obtain bounds on the field in the shadow. In contrast our result is believed to be the first rigorous asymptotic solution in the shadow of a nonseparable boundary, whose shape is frequency independent.The research for this paper was supported by U.S. National Science Foundation Grant No. GP-7985.  相似文献   

5.
Kaiser  Tobias  Forest  Samuel  Menzel  Andreas 《Meccanica》2021,56(5):1109-1128

In this contribution, a finite element implementation of the stress gradient theory is proposed. The implementation relies on a reformulation of the governing set of partial differential equations in terms of one primary tensor-valued field variable of third order, the so-called generalised displacement field. Whereas the volumetric part of the generalised displacement field is closely related to the classic displacement field, the deviatoric part can be interpreted in terms of micro-displacements. The associated weak formulation moreover stipulates boundary conditions in terms of the normal projection of the generalised displacement field or of the (complete) stress tensor. A detailed study of representative boundary value problems of stress gradient elasticity shows the applicability of the proposed formulation. In particular, the finite element implementation is validated based on the analytical solutions for a cylindrical bar under tension and torsion derived by means of Bessel functions. In both tension and torsion cases, a smaller is softer size effect is evidenced in striking contrast to the corresponding strain gradient elasticity solutions.

  相似文献   

6.
Buoyant magnetohydrodynamic (MHD) flows with Joulean and viscous heating effects are considered in a vertical parallel plate channel. The applied magnetic field is uniform and perpendicular to the plates which are subject to adiabatic and isothermal boundary conditions, respectively. The main issue of the paper is the levitation regime, i.e., the fully developed flow regime for large values of the Hartmann number M, when the hydrodynamic pressure gradient evaluated at the temperature of the adiabatic wall is vanishing. The problem is solved analytically by Taylor series method and the solution is validated numerically. It is found that the fluid velocity points everywhere and for all values of M downward. For small M’s, the velocity field extends nearly symmetrically (with respect to the mid-plane) over the whole section of the channel between the adiabatic and the isothermal walls. For large values of M, by contrast, the fluid levitates over a broad transversal range of the channel, while the motion becomes concentrated in a narrow boundary layer in the neighborhood of the isothermal wall. Accordingly, the fluid temperature is nearly uniform in the levitation range and decreases rapidly within the boundary layer in front of the isothermal wall. It also turns out that not only the volumetric heat generation by the Joule effect, but also that by viscous friction increases rapidly with increasing values of M, the latter effect being even larger than the former one for all M.  相似文献   

7.
This study presents an improved ghost‐cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work, ghost cells are mirrored through the boundary described using a level‐set method to farther image points, incorporating a higher‐order extra/interpolation scheme for the ghost‐cell values. A sensor is introduced to deal with image points near the discontinuities in the flow field. Adaptive mesh refinement is used to improve the representation of the geometry efficiently in the Cartesian grid system. The improved ghost‐cell method is validated against four test cases: (a) double Mach reflections on a ramp, (b) smooth Prandtl–Meyer expansion flows, (c) supersonic flows in a wind tunnel with a forward‐facing step, and (d) supersonic flows over a circular cylinder. It is demonstrated that the improved ghost‐cell method can reach the accuracy of second order in L1 norm and higher than first order in L norm. Direct comparisons against the cut‐cell method demonstrate that the improved ghost‐cell method is almost equally accurate with better efficiency for boundary representation in high‐fidelity compressible flow simulations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Based on the mechanics of anisotropic materials, the dynamic propagation problem of a mode Ⅲ crack in an infinite anisotropic body is investigated. Stress, strain and displacement around the crack tip are expressed as an analytical complex function, which can be represented in power series. Constant coefficients of series are determined by boundary conditions. Expressions of dynamic stress intensity factors for a mode Ⅲ crack are obtained. Components of dynamic stress, dynamic strain and dynamic displacement around the crack tip are derived. Crack propagation characteristics are represented by the mechanical properties of the anisotropic materials, i.e., crack propagation velocity M and the parameter ~. The faster the crack velocity is, the greater the maximums of stress components and dynamic displacement components around the crack tip are. In particular, the parameter α affects stress and dynamic displacement around the crack tip.  相似文献   

9.
IntroductionInengineering ,itisoftenrequiredtoextendatensionstructureonagivenboundary ,suchascablenetormembrane.Toanalyzethestructure ,itisnecessarytoknowtheinitialformofit.Butitisnoteasytogetanaccurateoneonanaverageboundary .Theformoftensionstructureunde…  相似文献   

10.
The mathematical formulation of the problem of determining the electrodes for the formation of intense beams of charged particles reduces to the solution of the Cauchy problem for the Laplace equation. One can proceed either by separating the variables [1] or on the basis of the theory of analytic continuation [2–5], This approach can be used for plane or axisymmetric flows. An algorithm for the construction of the analytic solution, which can also be used in the threedimensional case, is given below. It is assumed that the beam boundary coincides with the coordinate surface x1=0 of an orthogonal system xi (i=1,2,3). The solution is put in the form of a series in x1 with coefficients dependent on x2 and x3, determined from recurrence relations. The case of emission limited by space charge and temperature generally gives rise to difficulties due to the divergence of the series which makes it impossible to calculate the zero equipotential by the indicated method.As an example, the formation of beams with an elliptic cross section is considered in the following cases: (1) periodic variation of the z- component of the velocity; (2) nonmonotonic variation of the potential in one-dimensional flow between planes z=const; (3) a beam accelerated in accordance with a 3/2 law.In the construction of the expansions the conditions on the boundary are satisfied exactly by the first two terms of the series.  相似文献   

11.
Summary The Hansen's vector wave functions have been modified so it could apply directly for the solution of general exterior boundary value problems in compressible plasma for a spherical geometry. The vector wave functionL has been included to represent an acoustic wave and the three angular orthogonal functions have been defined using complex Fourier series in the azymuthal direction. Using this modified method of vector wave functions, the exterior spherical boundary value problem in compressible isotropic plasma has been solved. The boundary conditions prescribed over the surface of the sphere have been the tangential electric field (or the tangential magnetic field) and the radial component of the velocity vector (or the pressure). From those four basic boundary value problems the coefficients have been derived and several particular cases has been discussed.The research reported in this paper was supported in part by the National Science Foundation, U.S.A.  相似文献   

12.
The derivation of an expression of the macroscopic stress tensor in terms of microscopic variables in systems of finite interacting particles is discussed from different points of view. It is shown that in volume averaging the introduction of a fictitious “interaction stress field”T I with special boundary conditions on the boundary of the averaging volume is needed. In ensemble averaging similar results are obtained by using a multipole expansion of the local stress and force fields. In the appropriate limiting cases, the obtained results are shown to be consistent with the results of kinetic theories of polymer solutions. Paper, presented at the First Conference of European Rheologists at Graz, April 14 – 16, 1982.  相似文献   

13.
In general Stokes problems, no boundary conditions exist for the pressure. But pressure is an L2(Ω) function and can uniquely be represented as the divergence of a precisely defined vector field. In the 2-D case, this vector field can in turn be represented as the sum of a gradient (of a pressure-potential) and the curl of a second scalar potential. The latter potential is entirely determined by the first one. A variational equation is obtained for such pressure potential class, which exists and is uniquely characterized. This variational problem is well-posed. Finite element approximations can easily be realized and ensure high convergence rates for the L2(Ω) norm of the pressure.  相似文献   

14.
We prove a theorem on conditions for the differentiation of generalized Fourier series. We show that Fourier series solutions of boundary value problems can in general be differentiated term by term only once. To improve the differentiability properties of such series, we suggest to use pth-order boundary functions. We suggest an algorithm for constructing boundary functions for classical domains. This approach is illustrated by a new solution, with improved differentiability properties, of the problem on the torsion of an elastic rod of rectangular cross-section.  相似文献   

15.
This paper studies transverse vibration of rectangular plates with two opposite edges simply supported, other two edges arbitrarily supported and free edges elastically supported at points. A highly accurate solution is presented for calculating inherent frequencies and mode shape of rectangular plates elastically supported at points. The number and location of these points on free edges may be completely arbitrary. This paper uses impulse function to represent reaction and moment at points. Fourier series is used to expand the impulse function along the edges. Characteristic equations satisfying all boundary conditions are given. Inherent frequencies and mode shape with any accuracy can be gained.  相似文献   

16.
The variational solution of the nonlinear Signorini contact problem determines also the active contact zone Γ c . If the latter is known, then the elastic field is a solution of a linear mixed boundary value problem in which on Γ c the normal displacement and tangential traction are given, while on the non-contact part the total traction is zero. Such mixed boundary conditions in general generate singularities of the solution's stress field at the points P ( k ) where the boundary conditions change. For smooth data, however, the variational solution of the Signorini contact problem actually belongs to H 2(Ω)2, which implies the disappearance of these singularities, i.e., that the corresponding stress intensity factors vanish. This paper is devoted to the characterization of the active contact zone Γ c by the vanishing stress intensity factors including their sensitivity with respect to varying Γ c for two-dimensional problems provided that Γ c consists of a finite number of intervals. We use the method of asymptotic expansions and derive an explicit formula for the sensitivity, which is rigorously justified by employing weighted Sobolev spaces with detached asymptotics. These results can be used to determine the points P ( k ) with a corresponding Newton iteration. Accepted July 6, 2000?Published online January 22, 2001  相似文献   

17.
In this paper, the interaction between two immiscible fluids with a finite mobility ratio is investigated numerically within a Hele‐Shaw cell. Fingering instabilities initiated at the interface between a low‐viscosity fluid and a high‐viscosity fluid are analysed at varying capillary numbers and mobility ratios using a finite mobility ratio model. The present work is motivated by the possible development of interfacial instabilities that can occur in porous media during the process of CO2 sequestration but does not pretend to analyse this complex problem. Instead, we present a detailed study of the analogous problem occurring in a Hele‐Shaw cell, giving indications of possible plume patterns that can develop during the CO2 injection. The numerical scheme utilises a boundary element method in which the normal velocity at the interface of the two fluids is directly computed through the evaluation of a hypersingular integral. The boundary integral equation is solved using a Neumann convergent series with cubic B‐Spline boundary discretisation, exhibiting sixth‐order spatial convergence. The convergent series allows the long‐term nonlinear dynamics of growing viscous fingers to be explored accurately and efficiently. Simulations in low‐mobility ratio regimes reveal large differences in fingering patterns compared with those predicted by previous high‐mobility ratio models. Most significantly, classical finger shielding between competing fingers is inhibited. Secondary fingers can possess significant velocity, allowing greater interaction with primary fingers compared with high‐mobility ratio flows. Eventually, this interaction can lead to base thinning and the breaking of fingers into separate bubbles. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper we investigate the stability of some viscometric flows for a concentrated suspension model which allows for the effects of shear-induced migration, including plane and circular Couette and Poiseulle flows, and unbounded and bounded torsional flows. In the bounded torsional flow, where its radial outer boundary is assumed frictionless, an exact closeform solution is given. With the exception of torsional flows, we find that a limit point for all the steady-state solutions can exist for certain range in the parameter values. In all cases, disturbances can persist for a long time, O (H 2/a 2), where H is a dimension of the flow field, and a is the particles' radius.  相似文献   

19.
The magnetohydrodynamic flow of an incompressible, viscous, electrically conducting fluid in a rectangular duct, with an external magnetic field applied transverse to the flow, has been investigated. One of the duct's boundaries which is perpendicular to the magnetic field is taken partly insulated, partly conducting. An analytical solution has been developed for the velocity field and magnetic field by reducing the problem to the solution of a Fredholm integral equation of the second kind, which has been solved numerically. Solutions have been obtained for Hartmann numbers M up to 100. All the infinite series obtained are transformed to infinite integrals first and then to finite integrals which contain modified Bessel functions of the second kind. In this way, the difficulties associated with the computation of infinite integrals with oscillating integrands and slowly converging infinite series, the convergence of which is further affected for large values of M, have been avoided. It is found that, as M increases, boundary layers are formed near the non-conducting boundaries and in the interface region, and a stagnant region is developed in front of the conducting boundary for velocity field. The maximm value of magnetic field takes place on the conducting part. These behaviours are shown on some graphs.  相似文献   

20.
Let Ω be a 2-dimensional bounded domain, symmetric with respect to the x2-axis. The boundary has several connected components, intersecting the x2-axis. The boundary value is symmetric with respect to the x2-axis satisfying the general outflow condition. The existence of the symmetric solution to the steady Navier–Stokes equations was established by Amick [2] and Fujita [4]. Fujita [4] proved a key lemma concerning the solenoidal extension of the boundary value by virtual drain method. In this note, we give a different proof via elementary approach by means of the stream function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号