首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A rigorous model of the fully elliptic flow over the blade-to-blade stream surface in an annular aerofoil cascade is developed. The model accuracy stems from its precise simulation of the meridional hub-to-casing flow effects, including those of the shear stress components that are created by the spanwise velocity gradients. These stresses are unprecedentedly introduced in the flow-governing equations in the form of source terms and are modelled as such. The final set of flow-governing equations are solved using the Galerkin weighted residual method coupled with a biquadratic finite element of the Lagrangian type. The flow solution is verified against the numerical results of a fully three-dimensional flow model and a set of experimental data, both concerning a low-aspect-ratio stator of an axial flow turbine under a low Reynolds number and subsonic flow operation mode. The numerical results in this case show well predicted aerofoil loading and pitch-averaged exit flow conditions. Also evident is a substantial capability of the analysis in modelling such critical regions as the wake subdomain. It is further proven that the new terms in the governing equations enhance the quality of the numerical predictions in this class of flow problems.  相似文献   

2.
The development of asymmetric wake behind an aerofoil in turbulent incompressible flow has been computed using finite volume scheme for solving two-dimensional Navier-Stokes equations along with the k-ε model of turbulence. The results are compared with available experimental data. It is observed that the computed shift of the point of minimum velocity with distance is sensitive to the prescribed value of the normal component of velocity at the trailing edge of the aerofoil. Making the model constant Cu as a function of streamline curvature and changing the production term in the equation for ε, has only marginal influence on the results.  相似文献   

3.
Stability of an isolated membrane lying in a uniform two-dimensional low subsonic flow is studied theoretically and experimentally. The problem is formulated in a form of a boundary integral equation and differential equations. The boundary integral equation is solved by the boundary element method and the finite difference method is used to solve the differential equations. An effect of a membrane wake is used in the analysis. The theoretical critical divergence velocity is compared with the experimental value.  相似文献   

4.
A complete first-order model and locally analytic solution method are developed to analyse the effects of mean flow incidence and aerofoil camber and thickness on the incompressible aerodynamics of an oscillating aerofoil. This method incorporates analytic solutions, with the discrete algebraic equations which represent the differential flow field equations obtained from analytic solutions in individual grid elements. The velocity potential is separated into steady and unsteady harmonic parts, with the unsteady potential further decomposed into circulatory and non-circulatory components. These velocity potentials are individually described by Laplace equations. The steady velocity potential is independent of the unsteady flow field. However, the unsteady flow is coupled to the steady flow field through the boundary conditions on the oscillating aerofoil. A body-fitted computational grid is then utilized. Solutions for both the steady and the coupled unsteady flow fields are obtained by a locally analytic numerical method in which locally analytic solutions in individual grid elements are determined. The complete flow field solution is obtained by assembling these locally analytic solutions. This model and solution method are shown to accurately predict the Theodorsen oscillating flat plate classical solution. Locally analytic solutions for a series of Joukowski aerofoils demonstrate the strong coupling between the aerofoil unsteady and steady flow fields, i.e. the strong dependence of the oscillating aerofoil aerodynamics on the steady flow effects of mean flow incidence angle and aerofoil camber and thickness.  相似文献   

5.
A finite element method is proposed for the analysis of density flow which is induced by a difference of density. The method employs the idea that density variation can be pursued by using markers distributed in the flow field. For the numerical integration scheme, the velocity correction method is successfully used, introducing a potential for the correction of velocity. This method is useful because one can use linear interpolation functions for velocity, pressure and potential based on the triangular finite element. The final equations can be formulated using the quasi-explicit finite element method. A flume in a tank with sloping bottom has been analysed by the present method. The computed results show extremely good agreement with the experimental observations.  相似文献   

6.
In this paper we present a finite element method for the numerical solution of axisymmetric flows. The governing equations of the flow are the axisymmetric Euler equations. We use a streamfunction angular velocity and vorticity formulation of these equations, and we consider the non-stationary and the stationary problems. For industrial applications we have developed a general model which computes the flow past an annular aerofoil and a duct propeller. It is able to take into account jumps of angular velocity and vorticiy in order to model the flow in the presence of a propeller. Moreover, we compute the complete flow around the after-body of a ship and the interaction between a ducted propeller and the stern. In the stationary case we have developed a simple and efficient version of the characteristics/finite element method. Numerical tests have shown that this last method leads to a very fast solver for the Euler equations. The numerical results are in good agreement with experimental data.  相似文献   

7.
A finite difference study of the unsteady two-dimensional flow past a circular cylinder has been conducted using vorticity and streamfunction as the dependent variables. The two cases considered were impulsively started and decelerated flows. The impulsively started problem was considered to validate the method and has yielded results which agree quite closely with existing results from both calculations and experiments. The decelerated flow analysis produced results which can be explained in terms of induced velocity effects from existing wake vortices for both suddenly stopped and uniformly decelerated flows.  相似文献   

8.
Force fluctuations on a solid body are associated with unsteadiness in the wake, e.g. vortex shedding. Therefore, the control of force fluctuations can be realised by suppressing the flow unsteadiness. A NACA0024 aerofoil closed with a round trailing edge is chosen to represent the solid body throughout this investigation, with the Reynolds number fixed at Re = 1000 and angle of attack α ≤ 15o, at which the uncontrolled flow is two-dimensional. A linear optimal control is calculated by analysing the distribution of sensitivity of unsteadiness to control around the entire surface of the body. The nonlinear effects of the calculated control, which can be actuated through surface-normal suction and blowing across the surface of the aerofoil, are tested through two-dimensional direct numerical simulations. It is observed that a surface-normal velocity control with a maximum magnitude less than 8% of the free stream velocity completely suppresses unsteadiness at α = 10° with an overall drag reduction of 14% and a 138% increase of lift.  相似文献   

9.
A model having velocity components as basic unknowns is presented for calculation of two-dimensional flow past a symmetric profile with a wake in a channel. A modified least squares functional is used for the finite element solution of velocities. The determination of the position of the free streamline is treated as an optimum design problem. The concepts of cost function, geometry parameter and sensitivity derivative are employed. Numerical results are compared with published results obtained with streamfunction formulations.  相似文献   

10.
Analysis of the properties of the left ventricle flow during filling (diastole) is known to allow early detection of potential malfunctions during the fundamental heart pumping phase (systole). Diagnoses are now usually based on Doppler measurement of the flow velocity for which interpretative schemes and quantitative references are sought. The flow inside an ideal model of the left ventricle is here studied numerically by a finite difference method in prolate spheroid moving coordinates. The axisymmetric assumption is employed in this first study. The vortex dynamics is characterised by the formation of a wake vortex attached at the valvular edge which is shed at the end of the ventricle expansion. Major features are its translation by self-induced velocity and vortex-induced separations from the ventricle internal wall. Results are represented as, and compared with, clinical data showing a good general agreement and allowing an improved physical interpretation of the latter.  相似文献   

11.
Detailed measurements of two-dimensional profiles of static pressure, mean velocity, turbulence intensity and Reynolds shear stress were carried out with conventional pressure probes and hot wire probes at preselected streamwise stations in the boundary layer and wake of a 12.5% thick, 600 mm chord two-dimensional symmetric aerofoil mounted at zero incidence in a low speed wind tunnel. The chord Reynolds number was one million and the wake measurements extended up to three chord lengths (or nearly 660 trailing edge momentum thicknesses) downstream of the trailing edge. The data indicate rapid interaction of the wall layers immediately behind the trailing edge, leading to significant changes in the flow parameters close to the trailing edge. The relaxation of the wake is preceded by initial ‘overshoot’ in the streamwise profiles of mean-flow parameters and peak values of turbulence components. Further growth of the wake towards similarity/equilibrium is discussed.  相似文献   

12.
提出了一种将有限元和差分线法相结合求解无穷域势流问题的算法。用两同心圆将求解域划分为存在重叠的有限和无限两个区域,在有限和无限域上分别用有限元和差分线法求解Laplace方程边值问题。用差分线法推导出的关系式修正有限元方程,求解该方程组从而得到原问题的解。本算法将求解无穷域问题转化为代数特征值问题和有限域内线性方程组的...  相似文献   

13.
ntroductionLetΩ R2 beaboundeddomain .Weconsiderthefollowingnon_stationarynaturalconvectionproblem :Problem (Ⅰ ) Findu =(u1,u2 ) ,p ,andTsuchthat,foranyt1>0 ,ut- μΔu +(u· )u + p=λjT   ((x ,y ,t) ∈Ω× (0 ,t1) ) ,divu =0          ((x ,y,t) ∈Ω× (0 ,t1) ) ,Tt-ΔT +λu· T =0   ((x,y,t) ∈Ω× (0 ,t1) ) ,u =0 ,T =0       ((x,y,t)∈ Ω× (0 ,t1) ) ,u(x ,y ,0 ) =0 , T(x,y,0 ) =f(x,y)   ((x,y) ∈Ω) ,whereuisthefluidvelocityvectorfield ,pthepressurefield ,Tthet…  相似文献   

14.
Presented in this paper is a new method for the prediction of unsteady, incompressible separated flow over a two-dimensional aerofoil. The algorithm was developed from an existing unsteady potential flow model1 and makes use of an inviscid formulation for the flow field. The aerofoil is represented by vortex panels of linearly varying strength which are piecewise continuous at the corners. Discrete vortices with finite cores are used to model the separating shear layers. Following a brief summary of unsteady separation modelling, the theoretical framework is presented and the subsequent numerical implementation is discussed in detail. Results are given for flows which tend asymptotically to the steady state and conclusions are drawn regarding the usefulness of the method.  相似文献   

15.
A Galerkin finite element method and two finite difference techniques of the control volume variety have been used to study magnetohydrodynamic channel flows as a function of the Reynolds number, interaction parameter, electrode length and wall conductivity. The finite element and finite difference formulations use unequally spaced grids to accurately resolve the flow field near the channel wall and electrode edges where steep flow gradients are expected. It is shown that the axial velocity profiles are distorted into M-shapes by the applied electromagnetic field and that the distortion increases as the Reynolds number, interaction parameter and electrode length are increased. It is also shown that the finite element method predicts larger electromagnetic pinch effects at the electrode entrance and exit and larger pressure rises along the electrodes than the primitive-variable and streamfunction–vorticity finite difference formulations. However, the primitive-variable formulation predicts steeper axial velocity gradients at the channel walls and lower axial velocities at the channel centreline than the streamfunction–vorticity finite difference and the finite element methods. The differences between the results of the finite difference and finite element methods are attributed to the different grids used in the calculations and to the methods used to evaluate the pressure field. In particular, the computation of the velocity field from the streamfunction–vorticity formulation introduces computational noise, which is somewhat smoothed out when the pressure field is calculated by integrating the Navier–Stokes equations. It is also shown that the wall electric potential increases as the wall conductivity increases and that, at sufficiently high interaction parameters, recirculation zones may be created at the channel centreline, whereas the flow near the wall may show jet-like characteristics.  相似文献   

16.
A series of experiments is described in which an uncambered aerofoil, set at a constant incidence was traversed incrementally through a range of combined stagnation temperature/stagnation pressure distortions. Measurement of the static pressure distribution around the aerofoil yielded lift coefficient variations. It was concluded that the aerofoil behaviour was in agreement generally with an associated theoretical development although agreement was somewhat confused by the presence of wakes in the experiment and also by local incidence variations created by circumferential variations in static pressure. The data obtained were directly applicable to wing/wake interactions or to a compressor stator in a flow with distortion. It was recognized that in passing through such a distortion the rotor of a turbomachine would also sense a change of incidence, a feature not included in these experiments.  相似文献   

17.
Velocity–pressure integrated and consistent penalty finite element computations of high-Reynolds-number laminar flows are presented. In both methods the pressure has been interpolated using linear shape functions for a triangular element which is contained inside the biquadratic flow element. It has been shown previously that the pressure interpolation method, when used in conjunction with the velocity-pressure integrated method, yields accurate computational results for high-Reynolds-number flows. It is shown in this paper that use of the same pressure interpolation method in the consistent penalty finite element method yields computational results which are comparable to those of the velocity–pressure integrated method for both the velocity and the pressure fields. Accuracy of the two finite element methods has been demonstrated by comparing the computational results with available experimental data and/or fine grid finite difference computational results. Advantages and disadvantages of the two finite element methods are discussed on the basis of accuracy and convergence nature. Example problems considered include a lid-driven cavity flow of Reynolds number 10 000, a laminar backward-facing step flow and a laminar flow through a nest of cylinders.  相似文献   

18.
Finite difference solutions have been obtained by the perturbation method to investigate the influence of shear thinning and elasticity on the flow around an inclined circular cylinder of finite length in a uniform flow. In this numerical analysis a generalized upper-convected Maxwell model, in which the viscosity changes according to the Cross model, has been used.The local flow over the cylinder is only slightly deflected. However, in the wake flow behind the cylinder the particle path is remarkably influenced by the axial flow and rapidly flows up parallel to the cylinder's axis. Then it gradually rejoins direction of the incoming flow. It is found that viscoelastic fluids are prone to flow axially in the vicinity of the cylinder. The numerical predictions generally agree with the flow visualization results.The numerical solutions also demonstrate that elasticity has a strong effect on the velocity profile especially around both ends of the cylinder; elasticity increases the asymmetric profiles of both circumferential velocity and axial velocity with respect to equal to 90° and decreases a difference in the circumferential velocity between the windward end and the leeward end.For non-Newtonian fluids, the length of the wake flow is influenced by not only the Reynolds number but also the cylinder diameter and it is larger for the cylinder with the smaller diameter at the same Reynolds number.Partly presented at the 9th Australasian Fluid Mechanics Conference, University of Auckland, New Zealand, 8–12 December, 1986  相似文献   

19.
The present paper is concerned with the vibration of a three-dimensional pneumatic structures in wind flow. The aeroelastic dynamic stability of the structure is investigated. The flow is treated as a superposition of the mean flow and a potential flow associated with deformation of the structure. In the wake, the surface flow is considered to be negligible. It is observed that for a hemispherical pneumatic structure certain modes of vibration induce a negative aerodynamic damping, which increases with the increase of flow velocity. The velocity potential of the air-flow is expressed in integral form as a single-layer and double-layer potential. The problem is described by differential and integral equations and the FEM and BEM are used to solve these equations, respectively. To discretize the surface of the structure, triangular curvilinear 6-node elements are applied. The eigenvalues of the matrix equation representing the quadratic eigenvalue problem enable prediction of whether the motion of the structure is stable or unstable. Numerical examples are given. These analytical predictions are in agreement with observations of wind-tunnel experiments. The predicted and measured critical flow velocity is of the same order of magnitude.  相似文献   

20.
Boundary layer transition over an isolated surface roughness element is investigated by means of numerical simulation. Large Eddy Simulation (LES) flow-modeling approach is employed to study flow characteristics and transition phenomenon past a roughness element immersed within an incoming developing boundary layer, at a height-based Reynolds number of 1170. LES numerical results are compared to experimental data from literature showing the time-averaged velocity distribution, the velocity fluctuation statistics and the instantaneous flow topology.Despite slight difference in the intensity of streamwise velocity fluctuations, the present LES results and experimental data show very good agreement. The mean flow visualization shows streamwise counter-rotating vortices pairs formation downstream of the obstacle. The primary pair induces an upwash motion and a momentum deficit that creates a Kelvin-Helmholtz type flow instability. The instantaneous flow topology reveals the formation of coherent K-H vortices downstream that produce turbulent fluctuations in the wake of the roughness element. These vortices are streched and lifted up when moving downstream. The velocity fluctuations results show that the onset of the turbulence is dominated by the energy transfer of large-scale vortices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号