首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The computation of the incompressible three-dimensional turbulent viscous flow about an aerofoil/flat plate junction is investigated. An iterative, fully decoupled technique is applied to the Reynolds-averaged Navier-Stokes equations (RANSEs) written in a non-orthogonal curvilinear body-fitted co-ordinate system. The results of the computations are compared with well-documented experiments.  相似文献   

2.
The governing equations for axially symmetric flow, where the Reynolds stresses are expressed by scalar turbulent viscosity, are the Reynolds equations. The turbulence model k, ? is used in the well-known form for fully developed turbulent flow.The numerical method, a continuation of the MAC system1, is adapted so that even for high Reynolds cell numbers precision (δx2) can be achieved for the steady flow. Irregular cells join the rectangular network on the curved surface. Von Neumann's stability condition of the linearised numerical system is investigated. Special problems concerning the numerical solution of the turbulence model equations are stated and a special procedure is worked out to ensure that the fields k, ? do not converge to physically meaningless values. The program for the computer is universal in that the boundary problems can be assigned by input data.As an example, an axially symmetrical diffuser with an area ratio of widening 1.40 is computed. Fields of velocity and pressure at the wall as well as fields vT and k are assessed. The results are compared with an experiment. The conclusion is that this method is suitable for the problems mentioned in this study as well as for unsteady flow.  相似文献   

3.
The construction of an integrated numerical model is presented in this paper to deal with the interactions between vegetated surface and saturated subsurface flows. A numerical model is built by integrating the previously developed quasi-three-dimensional (Q3D) vegetated surface flow model with a two-dimensional (2D) saturated groundwater flow model. The vegetated surface flow model is constructed by coupling the explicit finite volume solution of 2D shallow water equations (SWEs) with the implicit finite difference solution of Navier-Stokes equations (NSEs) for vertical velocity distribution. The subsurface model is based on the explicit finite volume solution of 2D saturated groundwater flow equations (SGFEs). The ground and vegetated surface water interaction is achieved by introducing source-sink terms into the continuity equations. Two solutions are tightly coupled in a single code. The integrated model is applied to four test cases, and the results are satisfactory.  相似文献   

4.
In this paper we present a finite element method for the numerical solution of axisymmetric flows. The governing equations of the flow are the axisymmetric Euler equations. We use a streamfunction angular velocity and vorticity formulation of these equations, and we consider the non-stationary and the stationary problems. For industrial applications we have developed a general model which computes the flow past an annular aerofoil and a duct propeller. It is able to take into account jumps of angular velocity and vorticiy in order to model the flow in the presence of a propeller. Moreover, we compute the complete flow around the after-body of a ship and the interaction between a ducted propeller and the stern. In the stationary case we have developed a simple and efficient version of the characteristics/finite element method. Numerical tests have shown that this last method leads to a very fast solver for the Euler equations. The numerical results are in good agreement with experimental data.  相似文献   

5.
The development of asymmetric wake behind an aerofoil in turbulent incompressible flow has been computed using finite volume scheme for solving two-dimensional Navier-Stokes equations along with the k-ε model of turbulence. The results are compared with available experimental data. It is observed that the computed shift of the point of minimum velocity with distance is sensitive to the prescribed value of the normal component of velocity at the trailing edge of the aerofoil. Making the model constant Cu as a function of streamline curvature and changing the production term in the equation for ε, has only marginal influence on the results.  相似文献   

6.
Numerical simulations of two-fluid flow models based on the full Navier–Stokes equations are presented. The models include six and seven partial differential equations, namely, six- and seven-equation models. The seven-equation model consists of a non-conservative equation for volume fraction evolution of one of the fluids and two sets of balance equations. Each set describes the motion of the corresponding fluid, which has its own pressure, velocity, and temperature. The closure is achieved by two stiffened gas equations of state. Instantaneous relaxation towards equilibrium is achieved by velocity and pressure relaxation terms. The six-equation model is deduced from the seven-equation model by assuming an infinite rate of velocity relaxation. In this model, a single velocity is used for both fluids. The numerical solutions are obtained by applying the Strang splitting technique. The numerical solutions are examined in a set of one, two, and three dimensions for both the six- and seven-equation models. The results indicate very good agreement with the experimental results. There is an insignificant difference between the results of the two models, but the six-equation model is much more economical compared to the seven-equation model.  相似文献   

7.
The advent of standard algorithms for the numerical solution of partial differential equations has given researchers a new tool for fluid flow calculations. In this paper, single-phase flow in curved ducts is numerically simulated by imposing a spatially varying centrifugal force on a fluid flowing in a straight tube. The resulting set of partial differential equations is solved using the HARWELL-FLOW3D computer program. Comparison with other numerical and experimental results shows that this simplified formulation gives accurate results. The model neglects certain geometric terms of the order d/D, the duct-to-coil diameter ratio. The effect of these terms is investigated by considering the flow in a 90° bend for large d/D. It is shown that while there may be significant error in the prediction of the local variables for large d/D, the circumference-averaged quantities are well predicted.  相似文献   

8.
The flow of ionized gases under the influence of electromagnetic fields is governed by the coupled system of the compressible flow equations and the Maxwell equations. In this system, coupling of the flow with the electromagnetic field is obtained through nonlinear and stiff source terms, which may cause difficulties with the numerical solution of the coupled system. The discontinuous Galerkin finite element method is used for the numerical solution of this system. For the magnetic field vector, discontinuous Galerkin discretization is performed using a divergence‐free vector base for the magnetic field to preserve zero divergence in the element and retain the implicit constraint of a divergence‐free magnetic field vector down to very low level both globally and locally. To circumvent difficulties resulting from the presence of the stiff source terms, implicit time marching is used for the fully coupled system to avoid wrong wave shapes and propagation speeds that are obtained when the coupling source terms are lagged in time or by using splitting iterative schemes. Numerical solutions for benchmark problems computed on collocated meshes for the flow and electromagnetic field variables with this fully coupled monolithic approach showed good agreement with other numerical solutions and exact results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
A complete first-order model and locally analytic solution method are developed to analyse the effects of mean flow incidence and aerofoil camber and thickness on the incompressible aerodynamics of an oscillating aerofoil. This method incorporates analytic solutions, with the discrete algebraic equations which represent the differential flow field equations obtained from analytic solutions in individual grid elements. The velocity potential is separated into steady and unsteady harmonic parts, with the unsteady potential further decomposed into circulatory and non-circulatory components. These velocity potentials are individually described by Laplace equations. The steady velocity potential is independent of the unsteady flow field. However, the unsteady flow is coupled to the steady flow field through the boundary conditions on the oscillating aerofoil. A body-fitted computational grid is then utilized. Solutions for both the steady and the coupled unsteady flow fields are obtained by a locally analytic numerical method in which locally analytic solutions in individual grid elements are determined. The complete flow field solution is obtained by assembling these locally analytic solutions. This model and solution method are shown to accurately predict the Theodorsen oscillating flat plate classical solution. Locally analytic solutions for a series of Joukowski aerofoils demonstrate the strong coupling between the aerofoil unsteady and steady flow fields, i.e. the strong dependence of the oscillating aerofoil aerodynamics on the steady flow effects of mean flow incidence angle and aerofoil camber and thickness.  相似文献   

10.
This paper presents results obtained from an experimental study of the flow field over a multi-element aerofoil which incorporates either a conventional or an advanced slat. Detailed measurements of the mean flow and turbulent quantities over a multi-element aerofoil model equipped with either type of slat have been made in a wind tunnel using stationary and flying hot-wire (FHW) probes. The perfomance of the two slats at two angles of attack, =10° and 20°, were investigated and compared with each other. The results showed a better performance for the advanced slat in terms of the mean velocity field and hence an increase in the lift performance. The advantage of the advanced slat was more pronounced for the multi-element aerofoil placed at the higher angle of attack, i.e., 20°. These findings were substantiated by the Reynolds stresses measured over the multi-element aerofoil, with the conventional slat exhibiting higher values compared with its advanced slat counterpart. Both the mean velocity and Reynolds stress results clearly demonstrated that the conventional slat had a lower stall margin than the advanced slat.  相似文献   

11.
This paper presents numerical results for laminar, incompressible and non-isothermal polymer melt flow in sudden expansions. The mathematical model includes the mass, momentum and energy conservation laws within the framework of a generalized Newtonian formulation. Two constitutive relations are adopted to describe the non-Newtonian behavior of the flow, namely Cross and Modified Arrhenius Power-Law models. The governing equations are discretized using the finite difference method based on central, second-order accurate formulas for both convective and diffusive terms. The pressure–velocity coupling is treated by solving a Poisson equation for pressure. The results are presented for two commercial polymers and demonstrate that important flow parameters, such as pressure drop and viscosity distribution, are strongly affected by heat transfer features.  相似文献   

12.
We propose a new model and a solution method for two‐phase two‐fluid compressible flows. The model involves six equations obtained from conservation principles applied to a one‐dimensional flow of gas and liquid mixture completed by additional closure governing equations. The model is valid for pure fluids as well as for fluid mixtures. The system of partial differential equations with source terms is hyperbolic and has conservative form. Hyperbolicity is obtained using the principles of extended thermodynamics. Features of the model include the existence of real eigenvalues and a complete set of independent eigenvectors. Its numerical solution poses several difficulties. The model possesses a large number of acoustic and convective waves and it is not easy to upwind all of these accurately and simply. In this paper we use relatively modern shock‐capturing methods of a centred‐type such as the total variation diminishing (TVD) slope limiter centre (SLIC) scheme which solve these problems in a simple way and with good accuracy. Several numerical test problems are displayed in order to highlight the efficiency of the study we propose. The scheme provides reliable results, is able to compute strong shock waves and deals with complex equations of state. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a new technique that combines Grad’s 13-moment equations (G13) with a phenomenological approach to rarefied gas flows. This combination and the proposed solution technique capture some important non-equilibrium phenomena that appear in the early continuum-transition flow regime. In contrast to the fully coupled 13-moment equation set, a significant advantage of the present solution technique is that it does not require extra boundary conditions explicitly; Grad’s equations for viscous stress and heat flux are used as constitutive relations for the conservation equations instead of being solved as equations of transport. The relative computational cost of this novel technique is low in comparison to other methods, such as fully coupled solutions involving many moments or discrete methods. In this study, the proposed numerical procedure is tested on a planar Couette flow case, and the results are compared to predictions obtained from the direct simulation Monte Carlo method. This test case highlights the presence of normal viscous stresses and tangential heat fluxes that arise from non-equilibrium phenomena, which cannot be captured by the Navier–Stokes–Fourier constitutive equations or phenomenological modifications.   相似文献   

14.
A numerical investigation has been carried out for a laminar incompressible reciprocating flow in a circular pipe with a finite length. An examination of the governing equations and boundary conditions indicates that a sinusoidally reciprocating flow is governed by three similarity parameters: the kinetic Reynolds number Re, the dimensionless oscillation amplitude Ao, and the length to diameter ratio L/D. The numerical solution for the velocity profiles of a developing reciprocating flow shows that at any instant of time, there exist three flow regimes in the pipe, namely, an entrance regime, a fully developed regime and an exit regime. The numerical results for the fully developed region are shown to be in excellent agreement with the analytical solution. Based on the numerical results, a correlation equation of the space-cycle averaged friction coefficient for a laminar developing reciprocating pipe flow has been obtained in terms of the three similarity parameters.  相似文献   

15.
A control-volume-based solution of the complete set of Navier-Stokes equations for the laminar, three-dimensional developing flow in straight, eccentric, cylindrical annular ducts is described. Numerical results for velocity and pressure development, pressure defect and entrance lengths are presented for a wide range of duct parameters, i.e. relative eccentricity ? and radius ratio γ. The present results match very well with earlier numerical solutions for the limiting cases of developing flow in concentric ducts and fully developed flow in eccentric ducts. Comparison with earlier approximate results for developing flow in eccentric ducts indicates that the approximate model predicts the velocity and pressure development with an error of about 10%. However, the development length predicted by the approximate model is grossly in error. The pressure defect and development length in eccentric ducts are very high compared with their counterparts in concentric ducts. The pressure defect, development length and maximum velocity increase with the radius ratio for eccentric ducts, while the reverse is true for concentric ducts. Also, the apparent friction factor decreases as the eccentricity increases.  相似文献   

16.
A mixed algorithm of central and upwind difference scheme for the solution of steady/unsteady incompressible Navier-Stokes equations is presented. The algorithm is based on the method of artificial compressibility and uses a third-order flux-difference splitting technique for the convective terms and the second-order central difference for the viscous terms. The numerical flux of semi-discrete equations is computed by using the Roe approximation. Time accuracy is obtained in the numerical solutions by subiterating the equations in pseudotime for each physical time step. The algebraic turbulence model of Baldwin-Lomax is ulsed in this work. As examples, the solutions of flow through two dimensional flat, airfoil, prolate spheroid and cerebral aneurysm are computed and the results are compared with experimental data. The results show that the coefficient of pressure and skin friction are agreement with experimental data, the largest discrepancy occur in the separation region where the lagebraic turbulence model of Baldwin-Lomax could not exactly predict the flow.  相似文献   

17.
An efficient finite element algorithm is presented to simulate the planar converging flow for the viscoelastic fluid of the Leonov model. The governing equation set, composed of the continuity, momentum and constitutive equations for the Leonov fluid flow, is conveniently decoupled and a two-stage cyclic iteration technique is employed to solve the velocity and elastic strain fields separately. Artificial viscosity terms are imposed on the momentum equations to relax the elastic force and data smoothing is performed on the iterative calculations for velocities to further stabilize the numerical computations. The calculated stresses agree qualitatively with the experimental measurements and other numerically simulated results available in the literature. Computations were successful to moderately high values of Deborah number of about 27·5.  相似文献   

18.
A kinetic flux-vector-splitting method has been used to solve the Euler equations for inviscid, compressible flow on unstructured grids. This method is derived from the Boltzmann equation and is an upwind, cell-centered, finite volume scheme with an explicit time-stepping procedure. The Delaunay triangulation has been used to generate the grids. The approach is demonstrated for three flow field simulations, namely the subsonic flow over a two-component high-lift aerofoil, the transonic flow over an aerofoil and the supersonic flow in a channel.  相似文献   

19.
李勇  钱蔚旻  何录武 《力学季刊》2019,40(3):567-576
挤出胀大的数值模拟是非牛顿流体研究中具有挑战性的问题.本文运用格子Boltzmann方法(LBM)分析Oldroyd-B和多阶松弛谱PTT粘弹流体的挤出胀大现象,采用颜色模型模拟出口处粘弹流体和空气的两相流动,通过重新标色获得两种流体的界面,并最终获得胀大的形状.Navier-Stokes方程和本构方程的求解采用双分布函数模型.将胀大的结果与解析解、实验解和单相自由面LBM结果进行了比较,发现格子Boltzmann两相模型结果与解析解和实验结果相吻合,相比于单相模型,收敛速度更快,解的稳定性更高.研究了流道尺寸对胀大率的影响,并对挤出胀大的内在机理进行了分析.  相似文献   

20.
In this study we developed simple, coupled algorithms for solving low‐Reynolds‐number flows applicable to micro‐scale flows such as electro‐osmotic flows. The most popular scheme, i.e. the projection method, is not suitable for such flows because of its undesirable slip effect on boundaries at low‐Reynolds‐numbers. In our method, the velocity and pressure are strongly coupled, and the momentum and pressure equations are solved iteratively by using the successive over relaxation (SOR) method while exchanging the unknown variables as soon as they have been updated. The developed methods are applied to a model flow for evaluating their performance. It was found that the coupled schemes are indeed superior to a projection method, i.e. the fractional‐step method, in both numerical accuracy and CPU time. The code is then applied to a dc electro‐osmotic flow within a cavity driven by electrical force acting on the ions spread in the fluid. In this application, the system of equations for the fluid flow and that for the ion transport are solved in a decoupled way, but each system is solved by using fully implicit schemes. From the simulations and by introducing the concept of vorticity source, we can identify two roles of the body force, one contributing to build‐up of the osmotic pressure and the other to the fluid flow. The interesting reverse flow occurring after the external potentials applied on the electrodes have been shut off is also investigated in terms of the vorticity source. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号