首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 294 毫秒
1.
In this paper, the general boundary element method and the parallel computation are employed to solve laminar viscous flows in a driven square cavity, governed by the exact Navier–Stokes equations. Using the solution at Re=0 as the initial approximation, the convergent numerical results for high Reynolds number at Re=7500 are obtained, for the first time, by the boundary element method. This verifies the validity and great potential of the general boundary element method for highly non‐linear problems, which may greatly enlarge application regions of the boundary element method in science and engineering. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
LES and RANS for Turbulent Flow over Arrays of Wall-Mounted Obstacles   总被引:2,自引:0,他引:2  
Large-eddy simulation (LES) has been applied to calculate the turbulent flow over staggered wall-mounted cubes and staggered random arrays of obstacles with area density 25%, at Reynolds numbers between 5 × 103 and 5 106, based on the free stream velocity and the obstacle height. Re = 5 × 103 data were intensively validated against direct numerical simulation (DNS) results at the same Re and experimental data obtained in a boundary layer developing over an identical roughness and at a rather higher Re. The results collectively confirm that Reynolds number dependency is very weak, principally because the surface drag is predominantly form drag and the turbulence production process is at scales comparable to the roughness element sizes. LES is thus able to simulate turbulent flow over the urban-like obstacles at high Re with grids that would be far too coarse for adequate computation of corresponding smooth-wall flows. Comparison between LES and steady Reynolds-averaged Navier-Stokes (RANS) results are included, emphasising that the latter are inadequate, especially within the canopy region.  相似文献   

3.
This paper deals with the numerical simulation of fluid dynamics using the boundary–domain integral technique (BEM). The steady 2D diffusion–convection equations are discussed and applied to solve the plane Navier-Stokes equations. A vorticity–velocity formulation has been used. The numerical scheme was tested on the well-known ‘driven cavity’ problem. Results for Re = 1000 and 10,000 are compared with benchmark solutions. There are also results for Re = 15,000 but they have only qualitative value. The purpose was to show the stability and robustness of the method even when the grid is relatively coarse.  相似文献   

4.
Recent contributions to the 3-D vortex method for bluff-body flows are presented. The numerical method--a vortex method combined with a boundary element method--is briefy reviewed. It is applied to direct numerical simulation (DNS) of the flow past a sphere (Re= 300, 500 and 1000). The on-going work to extend the method towards vortex-based large-eddy simulation (LES) for high Reynolds number flows is also presented. Preliminary results for the flow past a hemisphere are discussed.  相似文献   

5.
The effect of an isolated roughness element on the forces on a sphere was examined for a Reynolds number range of 5 × 104 < Re < 5 × 105 using a novel sting-mounted sphere apparatus. The roughness element was a circular cylinder, and its width and height was varied to be 1, 2, and 4% of the sphere diameter. At subcritical Re, a lateral force is produced in the direction of the roughness, while at supercritical Re, the force is in the opposite direction. This is caused by asymmetric boundary layer separation, as shown using particle image velocimetry. At supercritical Re, a roughness element that is only 1% the sphere diameter produces a lift to drag ratio of almost one. It was found that the isolated roughness element has the largest effect on the lateral forces when it is located between a streamwise angle of about 40° and 80°. In addition to the mean forces, the unsteady forces were also measured. It was found that at subcritical Re, vortex shedding is aligned to the plane of the roughness element. In addition, the probability distribution of the forces was nearly Gaussian for subcritical Re, but for supercritical Re, the skewness and kurtosis deviate from Gaussian, and the details are dependent on the roughness size. A simple model developed for the vortical structure formed behind the roughness element can be extended to explain aspects of nominally smooth sphere flow, in which external disturbances perturb the sphere boundary layer in an azimuthally local sense. These results also form the basis of comparison for an investigation into the effectiveness of a moving isolated roughness element for manipulating sphere flow.  相似文献   

6.
Towards simulation of flapping wings using immersed boundary method   总被引:1,自引:0,他引:1  
In this work the immersed boundary method is applied to simulate incompressible turbulent flows around stationary and moving objects. The goal is to demonstrate that the immersed boundary technique along with a large eddy simulation approach is capable of simulating the effect of the so‐called leading edge vortex (LEV), which can be found in flapping wing aerodynamics. A Lagrangian method is used to approximate the solutions in the freshly cleared cells that lay within solid objects at one time step and emerge into fluid domain at the next time step. Flow around a stationary cylinder at ReD = 20, 40, and 3900 (based on cylinder diameter D) is first studied to validate the immersed boundary solver based on the finite volume scheme using a staggered grid. Then, a harmonically oscillating cylinder at ReD = 10 000 is considered to test the solver after the Lagrangian method is implemented to interpolate the solution in the freshly cleared cells. Finally, this approach is used to study flows around a stationary flat‐plate at several angles of attack and fast pitching flat‐plate. The rapidly pitching plate creates a dynamic LEV that can be used to improve the efficiency of flapping wings of micro air vehicle and to determine the optimum flapping frequency. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
A variant of the boundary element method, called the boundary contour method (BCM), offers a further reduction in dimensionality. Consequently, boundary contour analysis of two-dimensional problems does not require any numerical integration at all. In another development, a boundary contour implementation of a regularized hypersingular boundary integral equation (HBIE) using quadratic elements and end-node collocation was proposed and the technique is termed the hypersingular boundary contour method (HBCM). As reported in that work, the approach requires highly refined meshes in order to numerically enforce the stress continuity across boundary contour elements. This continuity requirement is very crucial since the regularized HBIE is only valid at collocation points where the stress tensor is continuous, while the computed stress at the endpoints of a boundary contour element, which is a non-conforming element, is generally not. This paper presents a new implementation of the HBCM for which the regularized HBIE is collocated at the mid-node of a boundary contour element. As the computed stress tensor is continuous at these mid-nodes, there is no need for unusually refined meshes. Some numerical tests herein show that, for the same mesh density, the HBCM using mid-node collocation has a comparable accuracy as the BCM.  相似文献   

8.
The problem of mixed convection about non-isothermal vertical surfaces in a saturated porous medium is analysed using boundary layer approximations. The analysis is made assuming that the surface temperature varies as an arbitrary function of the distance from the origin. A perturbation technique has been applied to obtain the solutions. Using the differentials of the wall temperature, which are functions of distance along the surface, as perturbation elements, universal functions are derived for various values of the governing parameter Gr/Re. Both aiding and opposing flows are considered. The universal functions obtained can be used to estimate the heat transfer and fluid velocity inside the boundary layer for any type of wall temperature variation. As a demonstration of the method, heat transfer results have been presented for the case of the wall temperature varying as a power function of the distance from the origin. The results have been studied for various combinations of the parameters Gr/Re and the power index m, taking both aiding and opposing flows into consideration. On comparing these results with those obtained by a similarity analysis, the agreement is found to be good.  相似文献   

9.
In the present experimental setup, the transient disturbance growth in a spatially invariant boundary layer flow, i.e., the asymptotic suction boundary layer (ASBL), has been investigated. The choice of the ASBL brings along several advantages compared with an ordinary spatially growing boundary layer. A unique feature of the ASBL is that the Reynolds number (Re) can be varied without changing the boundary layer thickness, which in turn allows for parameter variations not possible to carry out in traditional boundary layer flows. A spanwise array of discrete surface roughness elements was mounted on the surface to trigger modes with different spanwise wavenumbers (β). It is concluded that for each mode there exists a threshold roughness Reynolds number (Re k ), below which no significant transient growth is present. The experimental data suggests that this threshold Re k is both a function of β and Re. An interesting result is that the energy growth curves respond differently to a change in Re k when caused by a change in roughness height k, implying that Re remains constant, compared with a change in the free-stream velocity UU_\infty, which also affects the Re. The scaling of the energy growth curves both in level and the downstream direction is treated and appropriate scalings are found. The result shows a complex non-linear receptivity mechanism. Optimal perturbation theory, which has failed to predict the energy evolution in growing boundary layers, is tested for the ASBL and shows that it may satisfactorily predict the evolution of all transiently growing modes that are triggered by the roughness elements.  相似文献   

10.
The streamfunction-vorticity equations for incompressible two-dimensional flows are uncoupled and solved in sequence by the finite element method. The vorticity at no-slip boundaries is evaluated in the framework of the streamfunction equation. The resulting scheme achieves convergence, even for very high values of the Reynolds number, without the traditional need for upwinding. The stability and accuracy of the approach are demonstrated by the solution of two well-known benchmark problems: flow in a lid-driven cavity at Re ? 10,000 and flow over a backward-facing step at Re = 800.  相似文献   

11.
The boundary layer structure of oscillatory shallow open channel flows has been studied in a wide flume. Fluorescence solution was released at a porous rough bed through a diffuser covered by gravel of 0.5 cm grain size. A planar laser-induced fluorescence (PLIF) system was used to visualise the dye plumes in both vertical and horizontal planes for a qualitative understanding of the roles of large-scale flow structures in mass transport. A variety of tests were conducted for a range of oscillatory periods (30–240 s), water depths (3–16 cm) and velocity amplitudes (0.027–0.325 m/s), which cover a wide range of oscillatory flows with Reynolds numbers Re a varied from 0.3 × 104 (laminar) to 2.1 × 106 (fully turbulent). For quantitative investigation, a novel technique, namely combined laser-induced fluorescence (LIF) and 2D laser Doppler velocimetry (LDV) (LIF/LDV), was developed and used to measure the velocity and solute concentration simultaneously in a vertical plane over 50 cycles. From the dye plumes revealed by the PLIF in transitional flows, there are different patterns of flow structure and solute transport with three representative stages of acceleration, deceleration and flow reversal. In the acceleration stage, turbulence was suppressed with dye layers adhering to the surface with little vertical mass transport. In the deceleration stage, flame-like turbulent structures occurred when turbulence generation was prominent. This was investigated quantitatively by recording the percentage occurrence of the adhered smooth layers per cycle. For those smooth bed cases with Re a < 1.8 × 105, the adhered smooth dye layers type of boundary layer occupied 100% of the oscillation period. Over a sufficiently high Re a , a rough bed can generate fully turbulent oscillatory flows without the appearance of adhering dye layers. Between these two extremes, a transitional flow regime occurs in a wide range of flow conditions: Re a > 2.7 × 104 over the rough bed and Re a > 8.3 × 106 over a smooth bed.  相似文献   

12.
The non-linear two-point boundary value problem for three-dimensional compressible boundary layers is solved through the application of a boundary value technique for a range of parameters characterizing the nature of stagnation point flows. The analytical boundary conditions, at infinity, are applied at the edge of the computational mesh with iterations on the size of the domain. The solutions obtained show excellent agreement with the established similarity solutions for three-dimensional flows. The present method has the potential advantage of yielding the wall values of fw, gw and θ′w as a part of the solution, contrary to the previously used ‘shooting’ methods. The algorithm is computationally simple and numerically stable and extremely suitable for engineering design applications.  相似文献   

13.
Compact finite difference methods feature high‐order accuracy with smaller stencils and easier application of boundary conditions, and have been employed as an alternative to spectral methods in direct numerical simulation and large eddy simulation of turbulence. The underpinning idea of the method is to cancel lower‐order errors by treating spatial Taylor expansions implicitly. Recently, some attention has been paid to conservative compact finite volume methods on staggered grid, but there is a concern about the order of accuracy after replacing cell surface integrals by average values calculated at centres of cell surfaces. Here we introduce a high‐order compact finite difference method on staggered grid, without taking integration by parts. The method is implemented and assessed for an incompressible shear‐driven cavity flow at Re = 103, a temporally periodic flow at Re = 104, and a spatially periodic flow at Re = 104. The results demonstrate the success of the method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
A mixed discrete Fourier transform-Finite difference algorithm is developed and used for the calculation of rapidly changing viscous fluid flows past a circular cylinder. The numerical approach has been designed to overcome certain difficulties arising for high Reynolds number simulations. The foremost advantage of the technique lies in its fast calculations of the convolution sums portraying the convective terms of the governing equations. Third-order spatial discretizations and fourth-order time marching are implemented. New schemes are proposed for the boundary conditions at the solid wall and at large distances. The techniques are tested on a case study with other schemes (summarized by Roache1) in order to obtain an optimal choice. Definite indications on the stability and accuracy of boundary condition schemes are achieved. Support for the statement of dominant importance of boundary conditions is also given. A comparison of computational results with experimental data is presented for the case study of the flow past an impulsively started cylinder at Reynolds number 20. The time development of the symmetrical zone of recirculation, which is formed at an early stage of the flow, has been studied for 300 ≤ Re ≤ 9500 by means of the proposed algorithm. Computational results, comparisons with experimental data2 and discussion of upper limits of validity of the procedure will be presented in a companion paper.  相似文献   

15.
Experimental dual plane particle image velocimetry (PIV) data are assessed using direct numerical simulation (DNS) data of a similar flow with the aim of studying the effect of averaging within the interrogation window. The primary reason for the use of dual plane PIV is that the entire velocity gradient tensor and hence the full vorticity vector can be obtained. One limitation of PIV is the limit on dynamic range, while DNS is typically limited by the Reynolds number of the flow. In this study, the DNS data are resolved more finely than the PIV data, and an averaging scheme is implemented on the DNS data of similar Reynolds number to compare the effects of averaging inherent to the present PIV technique. The effects of averaging on the RMS values of the velocity and vorticity are analyzed in order to estimate the percentage of turbulence intensity and enstrophy captured for a given PIV resolution in turbulent boundary layers. The focus is also to identify vortex core angle distributions, for which the two-dimensional and three-dimensional swirl strengths are used. The studies are performed in the logarithmic region of a turbulent boundary layer at z + = 110 from the wall. The dual plane PIV data are measured in a zero pressure gradient flow over a flat plate at Re τ = 1,160, while the DNS data are extracted from a channel flow at Re τ = 934. Representative plots at various wall-normal locations for the RMS values of velocity and vorticity indicate the attenuation of the variance with increasing filter size. Further, the effect of averaging on the vortex core angle statistics is negligible when compared with the raw DNS data. These results indicate that the present PIV technique is an accurate and reliable method for the purposes of statistical analysis and identification of vortex structures.  相似文献   

16.
This paper presents an extension of a boundary element method to fatigue growth analysis of mixed-mode cracked plane elastic bodies. The method consists of the non-singular displacement discontinuity element presented by Crouch and Starfield and the crack-tip displacement discontinuity element due to the author. In the boundary element implementation the left or the right crack-tip element is placed locally at the corresponding left or right crack tip on top of non-singular displacement discontinuity elements that cover the entire crack surface and the other boundaries. Crack growth is simulated with an incremental crack extension analysis based on the modified maximum strain energy density criterion. In numerical simulation, for each increment of crack extension, remeshing of existing boundaries is not required because of an intrinsic feature of the boundary element method. Crack growth is simulated by adding new boundary elements on the incremental crack extension to the previous crack boundaries. At the same time, the element characters of some related elements are adjusted according to the manner in which the boundary element method is implemented. Some numerical results of fatigue growth in a plane elastic plate with a center-inclined crack under uniaxial cyclic loading are given.  相似文献   

17.
The Dorodnitsyn boundary later formulation is given a finite element interpretation and found to generate very accurate and economical solutions when combined with an implicit, non-iterative marching scheme in the downstream direction. The algorithm is of order (Δ2u, Δx) whether linear or quadratic elements are used across the boundary layer. Solutions are compared with a Dorodnitsyn spectral formulation and a conventional finite difference formulation for three Falkner-Skan pressure gradient cases and the flow over a circular cylinder. With quadratic elements the Dorodnitsyn finite element formulation is approximately five times more efficient than the conventional finite difference formulation.  相似文献   

18.
A mixed boundary element and finite element numerical algorithm for the simultaneous prediction of the electric fields, viscous flow fields, thermal fields and surface deformation of electrically conducting droplets in an electrostatic field is described in this paper. The boundary element method is used for the computation of the electric potential distribution. This allows the boundary conditions at infinity to be directly incorporated into the boundary integral formulation, thereby obviating the need for discretization at infinity. The surface deformation is determined by solving the normal stress balance equation using the weighted residuals method. The fluid flow and thermal fields are calculated using the mixed finite element method. The computational algorithm for the simultaneous prediction of surface deformation and fluid flow involves two iterative loops, one for the electric field and surface deformation and the other for the surface tension driven viscous flows. The two loops are coupled through the droplet surface shapes for viscous fluid flow calculations and viscous stresses for updating the droplet shapes. Computing the surface deformation in a separate loop permits the freedom of applying different types of elements without complicating procedures for the internal flow and thermal calculations. Tests indicate that the quadratic, cubic spline and spectral boundary elements all give approximately the same accuracy for free surface calculations; however, the quadratic elements are preferred as they are easier to implement and also require less computing time. Linear elements, however, are less accurate. Numerical simulations are carried out for the simultaneous solution of free surface shapes and internal fluid flow and temperature distributions in droplets in electric fields under both microgravity and earthbound conditions. Results show that laser heating may induce a non-uniform temperature distribution in the droplets. This non-uniform thermal field results in a variation of surface tension along the surface of the droplet, which in turn produces a recirculating fluid flow in the droplet. The viscous stresses cause additional surface deformation by squeezing the surface areas above and below the equator plane.  相似文献   

19.
The Boundary Element Method is now well established as a valid numerical technique for the solution of field problems, equal to the Finite Element Method in generality and surpassing it in computational efficiency in some cases.1 In this paper is presented a 'Regular Boundary Element Method' as applied to inviscid laminar fluid flow problems. It involves the formation of a system of regular integral equations obtained by moving the singularity outside the domain of the given problem. It is also shown that non-conforming elements may be used whereby freedoms are not defined at the geometric nodes under the boundary element discretization. A linear element is developed here; higher order variants could easily be defined. Satisfactory numerical results have been obtained using the proposed regular method with both conventional (continuous across the boundary) and non-conforming boundary elements for two-dimensional inviscid laminar fluid flow problems having regular and singular solutions.  相似文献   

20.
Turbulence in rough-wall boundary layers: universality issues   总被引:1,自引:0,他引:1  
Wind tunnel measurements of turbulent boundary layers over three-dimensional rough surfaces have been carried out to determine the critical roughness height beyond which the roughness affects the turbulence characteristics of the entire boundary layer. Experiments were performed on three types of surfaces, consisting of an urban type surface with square random height elements, a diamond-pattern wire mesh and a sand-paper type grit. The measurements were carried out over a momentum thickness Reynolds number (Re θ) range of 1,300–28,000 using two-component Laser Doppler anemometry (LDA) and hot-wire anemometry (HWA). A wide range of the ratio of roughness element height h to boundary layer thickness δ was covered (0.04 £ h/d £ 0.400.04 \leq h/\delta \leq 0.40). The results confirm that the mean profiles for all the surfaces collapse well in velocity defect form up to surprisingly large values of h/δ, perhaps as large as 0.2, but with a somewhat larger outer layer wake strength than for smooth-wall flows, as previously found. At lower h/δ, at least up to 0.15, the Reynolds stresses for all surfaces show good agreement throughout the boundary layer, collapsing with smooth-wall results outside the near-wall region. With increasing h/δ, however, the turbulence above the near-wall region is gradually modified until the entire flow is affected. Quadrant analysis confirms that changes in the rough-wall boundary layers certainly exist but are confined to the near-wall region at low h/δ; for h/δ beyond about 0.2 the quadrant events show that the structural changes extend throughout much of the boundary layer. Taken together, the data suggest that above h/δ ≈ 0.15, the details of the roughness have a weak effect on how quickly (with rising h/δ) the turbulence structure in the outer flow ceases to conform to the classical boundary layer behaviour. The present results provide support for Townsend’s wall similarity hypothesis at low h/δ and also suggest that a single critical roughness height beyond which it fails does not exist. For fully rough flows, the data also confirm that mean flow and turbulence quantities are essentially independent of Re θ; all the Reynolds stresses match those of smooth-wall flows at very high Re θ. Nonetheless, there is a noticeable increase in stress contributions from strong sweep events in the near-wall region, even at quite low h/δ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号