首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of the present work is to predict compressible swirl flow in the nozzle of air‐jet spinning using the realizable k–ε turbulence model and discuss the effect of the nozzle pressure. The periodic change of flow patterns can be observed. The recirculation zone near the wall of the injectors upstream increases in size and moves gradually upstream, whereas the vortex breakdown in the injector downstream shifts slowly towards the nozzle outlet during the whole period. A low axial velocity in the core region moves gradually away from the centerline, and the magnitude of the center reverse flow and the area occupied by it increase with axial distance due to the vortex breakdown. From the tangential velocity profile, there is a very small free‐vortex zone. With increasing nozzle pressure, the velocity increases and the location of vortex breakdown is moved slightly downward. However, the increase in the velocity tends to decline at nozzle pressure up to a high level. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
A numerical prediction for 3D swirling recirculating flow in an air‐jet spinning nozzle with a slotted‐tube is carried out with the realizable k–ε turbulence model. The effects of the groove parameters on the flow and yarn properties are investigated. The simulation results show that some factors, such as reverse flow upstream of the injector, vortex breakdown downstream of the injector, corner recirculation zone (CRZ) behind the step and vortex ring in the groove caused by the groove geometric variation, are significantly related to fluid flow, and consequently to yarn properties. With increasing groove height, the length of the CRZ increases, while the initial vortex ring in the groove decreases and a same direction rotating vortex forms in the bottom of the groove. Similarly, as the groove width increases, the extent of both vortex breakdown in downstream of the injectors and the vortex ring in the groove increases slightly, whereas the CRZ lengths in stream‐wise direction decrease. Some factors, such as the negative tangential velocities, the size of the vortex rings in the grooves and the CRZ, are constant for nozzles with different groove lengths. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
An experimental investigation on vortex breakdown dynamics is performed. An adverse pressure gradient is created along the axis of a wing-tip vortex by introducing a sphere downstream of an elliptical hydrofoil. The instrumentation involves high-speed visualizations with air bubbles used as tracers and 2D Laser Doppler Velocimeter (LDV). Two key parameters are identified and varied to control the onset of vortex breakdown: the swirl number, defined as the maximum azimuthal velocity divided by the free-stream velocity, and the adverse pressure gradient. They were controlled through the incidence angle of the elliptical hydrofoil, the free-stream velocity and the sphere diameter. A single helical breakdown of the vortex was systematically observed over a wide range of experimental parameters. The helical breakdown coiled around the sphere in the direction opposite to the vortex but rotated along the vortex direction. We have observed that the location of vortex breakdown moved upstream as the swirl number or the sphere diameter was increased. LDV measurements were corrected using a reconstruction procedure taking into account the so-called vortex wandering and the size of the LDV measurement volume. This allows us to investigate the spatio-temporal linear stability properties of the flow and demonstrate that the flow transition from columnar to single helical shape is due to a transition from convective to absolute instability.  相似文献   

4.
三角翼前缘涡的某些破裂形式及特性研究   总被引:2,自引:0,他引:2  
基于流动显示和PIV技术测量的实验结果,对三角翼前缘涡破裂的一些形式和破裂特性进行了分析和讨论。通过PIV测量所得到的涡量分布证实了在螺旋破裂的情况下,涡核的螺旋方向与前缘涡的旋转方向相反,及双螺旋破裂形式的存在等。进而对螺旋波的形成机理提出了与有关文献不同的看法。  相似文献   

5.
The internal compressible flow of a thin vortex chamber was investigated experimentally by measuring the radial distribution of temperature and pressure, from which the velocity field was calculated. The bulk of the internal vortex was found to be described by uθr0.69 = constant. The total resistance of the vortex chamber to the flow was also investigated in the context of fluidic vortex diode behavior under conditions of compressible and choked flow. It was found that the vortex chamber choked at an upstream-to-downstream pressure ratio of about 6 and in doing so passed a mass flow rate of 28% of the equivalent one-dimensional ideal nozzle. The resistance of vortex chambers is known to be strongly influenced by the presence of reversed flow in the exit due to vortex breakdown. Schlieren photography of the swirling exhaust flow was used to show that, while vortex breakdown does occur, it can only do so after the flow has become subsonic downstream of the exit and cannot therefore influence the vortex chamber resistance.  相似文献   

6.
细长体大迎角非对称涡流的数值研究   总被引:8,自引:0,他引:8  
通过数值方法对大迎角细长体低速湍流流场的模拟,探讨头部顶端极小扰动对细长体非对称绕流形成与发展的影响.结果表明在细长体顶端附近施加极小扰动可以模拟出实验观测到的非对称流场,非对称的涡系结构沿轴向是逐步发展的,截面侧向力沿轴向的分布呈现正弦型曲线的变化特征,扰动能量经过指数增长后达到饱和,有效扰动的规模影响涡流非对称性的大小及分布,单侧扰动产生的流场非对称性随扰动周向位置的变化呈现单周期性规律.小扰动诱发非对称的数值算例表明非对称绕流的形成是源于流场的空间不稳定性机制.  相似文献   

7.
This paper studies the properties of turbulent swirling decaying flow induced by tangential inlets in a divergent pipe using the realizable k–ε turbulence model and discusses the effects of the injector pressure and injection position. The results of transient solutions show that both the recirculation zone near the wall in upstream of the injectors and the vortex breakdown in downstream of the injectors increase in size during the whole period. A nearly axisymmetric conical breakdown is formed and its internal structure consists of two asymmetric spiral‐like vortices rotating in opposite directions. The stagnation point shifts slowly toward the pipe outlet over time. The maxima of the three velocity components, which are located near the wall, decrease gradually with streamwise direction. It can also be inferred that Mach number approaches 1.0 near the injector outlets. The velocities increase with the increasing injector pressure. However, its increasing trend is not significant. With the increase of the injection position, vortex breakdown moves in downstream direction and the pitch along the streamwise direction increases. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Three-dimensional unsteady Euler simulations are presented for the interaction of a streamwise vortex with an oblique shock of angle β = 23.3° at Mach 3 and 5. The flowfield features are analyzed for weak, moderate and strong interaction regimes. The details of the free recirculation zone at conditions of subsonic and supersonic flow on the vortex axis are considered. The vortex breakdown under conditions of a subsonic vortex core is characterized by a continuous growth and gradual degeneration of the region, unlike the supersonic core condition wherein a steady recirculation zone is achieved. The possibility of using a localized steady and pulsed periodic energy deposition on the vortex axis for stimulating the breakdown is demonstrated for various interaction regimes. It is shown that the formation of a subsonic wake downstream of an energy source lying on the vortex axis contributes to a more significant growth of the dimensions of the recirculation zone compared to the case when the vortex core remains supersonic. The possibility of achieving the effects similar to the steady case is demonstrated by the effect of a pulsed periodic energy source on the flow under consideration for corresponding equivalence parameters.   相似文献   

9.
We consider an incompressible and inviscid fluid flow, called “swirl flow” that rotates around a certain axis in three-dimensional space. We investigate numerically the dynamics of a three-dimensional vortex sheet which is defined as a surface across which the velocity field of the swirl flow changes discontinuously. The vortex method and a fast summation method are implemented on a parallel computer. These numerical methods make it possible to compute the evolution of the vortex sheet for a long time and to describe the complex dynamics of the sheet.  相似文献   

10.
Experiments are reported in which the minimum swirl intensity required to produce a central recirculation zone in a swirling sudden expansion flow is determined as a function of expansion ratio and inlet conditions. Using a swirl generator which allows for independent variation of velocity profile shape and swirl number, it is shown that an inlet tangential velocity distribution with a large solid body vortex core or an axial velocity profile with a maximum on the axis will lead to a higher critical swirl.  相似文献   

11.
A laboratory scale cyclone dust separator with swirl numbers varying from 3.043 to 1.790 was used to examine the effects of different downstream pipework configurations, flowrates and swirl numbers upon the size, shape, and position of the precessing vortex core. Also examined was the effect the precessing vortex core had on the reverse flow zone, and the relationship between the two. It was concluded that the reverse flow zone displaced the central vortex core to create the precessing vortex core. The reverse flow zone would then provide feedback for the precessing vortex core, and precess around the central axis about 30 degrees behind the precessing vortex core (P.V.C). The size and position of the P.V.C was effected by changes in Reynolds number, and any additions of downstream systems to the cyclone would also affect the strength of the P.V.C. The P.V.C would squeeze and accelerate the flow through a constriction set up between the outer limits of the core and of the exit diameter wall. Spiral engulfment vortices were produced on the outside of the flow and served as the initial entrainment mechanism for external flow. The authors wish to acknowledge the financial assistance provided by British Petroleum for this research. P. Yazdabadi acknowledges the award of a SERC Total Technology studentship.  相似文献   

12.
The focus of this study lies on turbulent incompressible swirling flows with high swirl intensity. A systematic parameter study is conducted to examine the sensitivity of the mean velocity field in a swirl chamber to changes in the Reynolds number, swirl intensity and channel outlet geometry. The investigated parameter range reflects the typical kinematic flow conditions found in heat transfer applications, such as the cooling of the turbine blade known as cyclone cooling. These applications require a swirl intensity, which is typically much higher than necessary for vortex breakdown. The resulting flows are known as flow regime II and III. In comparison to flow regime I, which denotes a swirling flow without vortex breakdown, these flow regimes are characterized by a subcritical behavior. In this context, subcritical means that the flow is affected by the downstream channel section. Based on mean velocity field measurements in various swirl chamber configurations, it is shown that flow regime III is particularly sensitive to these effects. The channel outlet geometry becomes a determining parameter and, therefore, small changes at the outlet can produce entirely different flow patterns in the swirl chamber. In contrast, flow regime II, as well as flow regime I and axial channel flows, are much less sensitive to changes at the channel outlet. The knowledge about the sensitivity of the flow in different flow regimes is highly relevant for the design of a cyclone cooling system. Cooling systems employing flow regime III can result in a weakly robust flow system that may change completely over the operating range. As a remedy, the swirl intensity needs to be decreased so that flow regime III cannot be reached, which, however, reduces the maximum achievable heat transfer in the cooling system. Alternatively, the flow has to transition back from flow regime III to flow regime II or I before the flow leaves the swirl chamber. Two practical methods are presented. These findings can be directly applied in the design processes of future cyclone cooling systems, and other applications of swirling flow.  相似文献   

13.
The low swirl flow is a novel method for stabilizing lean premixed combustion to achieve low emissions of nitrogen oxides. Understanding the characteristics of low swirl flows is of both practical and fundamental interest. In this paper, in order to gain better insight into low swirl stabilized combustion, large eddy simulation and dynamically thickened flame combustion modeling are used to characterize various features of non-reacting and reacting low swirl flows including vortex breakdown, shear layers’ instability, and coherent structures. Furthermore, four test cases with different equivalence ratios are studied to evaluate the effects of equivalence ratio on the flame and flow characteristics. A finite volume scheme on a Cartesian grid with a dynamic one equation eddy viscosity subgrid model is used for large eddy simulations. The obtained results show that the combustion heat release and increase in equivalence ratio toward the stoichiometric value decrease the local swirl number of the flow field, while increasing the flow spreading at the burner outlet. Results show that the flame becomes W shaped as the equivalence ratio increases. Moreover, the combination of the swirling motion and combustion heat release temporally imposes a vortex breakdown in the post-flame region, which leads to occurrence of a transient recirculation zone. The temporal recirculation zone disappears downstream of the burner outlet due to merging of the inner shear layer from all sides at the centerline. Also, various analyses of shear layers’ wavy and vortical structures show that combustion heat release has the effect of decreasing the instability amplitude and vortex shedding frequency.  相似文献   

14.
A computational code EZ‐vortex is developed for the motion of slender vortex filaments of closed or open shape. The integro‐differential equations governing the motion of the vortex centre lines are either the Callegari and Ting equations, which are the leading order solution of a matched asymptotic analysis, or equivalent forms of these equations. They include large axial velocity and nonsimilar profiles in the vortical cores. The fluid may be viscous or inviscid. This code is validated both against known solutions of these equations and results from linear stability analyses. The linear and non‐linear stages of a perturbed two‐vortex wake and of a four‐vortex wake model are then computed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
A thin‐tube vortex method is developed to investigate the intrinsic instability within a counter‐rotating vortex pair system and the effects from the core size and the wavenumbers (or wavelengths). The numerical accuracy and the advantages of the scheme are theoretically estimated. A nearest‐neighbour‐image method is employed in this three‐dimensional vortex simulation. Agreement with Crow's instability analysis has been achieved numerically for the long‐wave cases. A short‐wave instability for the zeroth radial mode of bending instability has also been found using the thin‐tube vortex simulations. Then, the combinations of long‐ and short‐wave instability are investigated to elucidate the non‐linear effects due to the interactions of two different modes. It is shown that instability is enhanced if both long‐ and short‐wave instabilities occur simultaneously. Although the method used in the paper is not capable of including effects such as axial flow, vortex core deformation and other complicated viscous effects, it effectively predicts and clarifies the first‐order factor that dominates the sinusoidal instability behaviour in a vortex pair. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Using a quasi three-dimensional instantaneous measurement technique, which combines particle tracking velocimetry (PTV) with volume scanning, first quantitative experimental results of the unsteady and asymmetric interior region of vortex breakdown were obtained. The study was carried out in a low speed flow through a cylindrical tube. A vortex was generated by a set of guidevanes and subjected to an adverse pressure gradient causing its breakdown. By scanning a pulsed illuminated planar laser light sheet, a set of meridional and azimuthal cuts of the flow was obtained. With PTV the recorded particle paths in the cuts were processed in order to obtain the instantaneous two-dimensional velocity field, mean streamlines and vorticity distribution. Moreover, the three-dimensional shape of the appearing breakdown, visualized with fluorescent dye, was reconstructed from the cuts. The results revealed that the shape of the bubble nearly equals the streamsurface of the stagnation point. According to the conditions in the water tunnel a single tilted vortex ring at the open rear part of the bubble dominates the interior flow structure of the bubble as first noted by Sarpkaya (1971). The vortical flow is bulged over the bubble, restored and intensified at the lower end. The gathered data lead to the conclusion that the vortex axis remains parallel to the centerline.  相似文献   

17.
Local transport of the flow momentum and scalar admixture in the near-field of turbulent swirling jets (Re = 5,000) has been investigated by using a combination of the particle image velocimetry and planar laser-induced fluorescence methods. Advection and turbulent and molecular diffusions are evaluated based on the measured distributions of the mean velocity and concentration and the Reynolds stresses and fluxes. As has been quantified from the data, the flow swirl intensifies the entrainment of the surrounding fluid and promotes mass and momentum exchange in the outer mixing layer. A superimposed swirl results in the appearance of a wake/recirculation region at the jet axis and, consequently, the formation of an inner shear layer. In contrast to the scalar admixture, the momentum exchange in the inner shear layer is found to be strongly intensified by the swirl. For the jet with the highest considered swirl rate, a substantial portion of the surrounding fluid is found to enter the unsteady central recirculation zone, where it mixes with the jet that is issued from the nozzle. The contribution of the coherent velocity fluctuations, which are induced by large-scale vortex structures, to the turbulent transport has been evaluated based on triple decomposition, which was based on proper orthogonal decomposition analysis of the velocity data sets. For the considered domain of the jet with the highest swirl rate and vortex breakdown, the contributions of detected helical vortex structures, inducing pressing vortex core, to the radial fluxes of the flow momentum and the scalar admixture are found to locally exceed 65% and 80%, respectively.  相似文献   

18.
The well-known investigations of vortex breakdown are supplemented with an exact analytic representation of this phenomenon on the basis of the complete Navier-Stokes equations for the case of a potential swirl of the input flow about the axis of symmetry.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 167–169, May–June, 1995.  相似文献   

19.
This paper describes the motion and the flow induced by a thin tubular vortex coiled on a torus. The vortex is defined by the number of turns, p, that it makes round the torus symmetry axis and the number of turns, q, that it makes round the torus centerline. All toroidal filamentary vortices are found to progress along and to rotate round the torus symmetry axis in an almost steady manner while approximately preserving their shape. The flow, observed in a frame moving with the vortex, possesses two stagnation points. The stream tube emanating from the forward stagnation point and the stream tube ending at the backward stagnation point transversely intersect along a finite number of streamlines. This produces a three-dimensional chaotic tangle whose geometry depends primarily on the value of p. Inside this chaotic shell there are two major stability tubes: the first one envelopes the vortex whereas the second one runs parallel to it and possesses the same topology. When p > 2 there is an additional stability tube enveloping the torus centerline.  相似文献   

20.
In order to investigate the connection between the bubble and the spiral form of vortex breakdown, experiments were conducted: an external disturbance in the form of an azimuthally spinning waveform was imposed in a pipe. The azimuthal wave number was varied by adjusting the phase difference among four oscillating pistons mounted circumferentially on the pipe. By imposing a disturbance of zero azimuthal wave number, a spiral was transformed into a bubble, and this occurred only for selective piston frequencies; the vortex breakdown which altered from the spiral to the bubble moved upstream, where it remained as a bubble as long as the external disturbance remained. Once the disturbance was removed, the bubble returned to a spiral. By imposing a disturbance of azimuthal wave number +1 (the first circumferential mode rotating in the same direction as the mean swirl), a bubble was transformed into a spiral for selective piston frequencies, and the spiral moved downstream. These preferred frequencies were found to be the same as the unexcited frequencies observed in the spiral in its natural state. As long as the external disturbance was imposed, the breakdown altered from the bubble to the spiral remained as a spiral; once the disturbance was removed, the spiral reverted to a bubble. By imposing a disturbance with azimuthal wave number -1 (the first circumferential mode rotating in the opposite direction to the mean swirl), no change was detected in either a bubble or a spiral. By imposing a disturbance with azimuthal wave number 2 (the second circumferential mode), for selective piston frequencies a bubble was transformed into what appears to be the so-called two-tailed type. Thus, it appears that hydrodynamic instability plays a role in interchanging vortex breakdown types, and a comparison with available stability theories is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号