首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
In this paper, the effect of geometrical scaling on the onset of flashback into a cylindrical premixing zone of a swirl flame is investigated. We discriminate two types of flashback. In the first type of flashback the flame propagates upstream inside an already present axial recirculation zone. This flashback is caused by turbulent burning along the vortex axis (TBVA1) and is controlled by flame extinction inside the recirculation zone. The second type of flashback is caused by combustion induced vortex breakdown (CIVB2). This type of flashback is characterised by the aerodynamic influence of the combustion heat release that leads to propagation of the axial recirculation zone and the flame in upstream direction.To study the effects of geometrical scaling on the flow fields and the two types of flashback, the operation of two geometrically scaled burners are compared at equal Reynolds number. By this method it is possible to observe the flashback phenomena in similar swirl flow fields but with different turbulent scales affecting the combustion process. To check flow field similarity and to indentify the flashback type, the non-reacting and reacting flow fields have been examined by planar particle imaging velocimetry and simultaneous recording of the flame luminescence.It is shown that geometrical scaling of the burner shifts the equivalence ratio at which flashback occurs and that this shift is different for the two types of flashback. Consistency and inconsistency with known scaling and stability criterions is discussed. Analysing the fluid dynamics and turbulent combustion gives a first explanation of why CIVB and TBVA are affected differently by geometrical scaling at constant Reynolds number which is in good agreement with the experimental observations.  相似文献   

2.
Large Eddy Simulation of Low Swirl Flames Under External Flow Excitations   总被引:2,自引:0,他引:2  
Low swirl flame characteristics under external flow excitations are numerically investigated using large eddy simulations with a dynamically thickened flame combustion model. A finite volume scheme on a Cartesian grid with a dynamic one equation eddy viscosity subgrid scale model is used for large eddy simulations. The excitations are imposed on inlet velocity profiles by a sinusoidal forcing function over a wide range of amplitudes and frequencies. Present investigation shows that although, the swirling motion of the low swirl flame is not intense enough to induce a recirculation zone in ensemble averaged results, external flow excitations increase the local swirl number upstream of the flame front. Such increase in the local swirl number is at maximum value when the low swirl flame is excited at the dominant frequency of the flow field, which in turn induces a vortex breakdown and hence a central recirculation zone. The strength and size of the time averaged recirculation zone depend on both the amplitude and frequency of the excitations. Moreover, phase-locked results indicate that external flow excitations induce local swirl fluctuations ahead of the flame front which alter the strength of the recirculation zone at different phase angles of the excitations.  相似文献   

3.
The interaction of heat release by chemical reaction and the flow dominates flame transition in swirling flows caused by combustion induced vortex breakdown (CIVB). The simultaneous application of 1 kHz high-speed particle imaging velocimetry (PIV) for the analysis of the flow field and OH planar laser-induced fluorescence for the detection of the flame front is particularly useful for the improvement of the understanding of the observed fast CIVB driven flame propagation. For the first time, the combination of both techniques was successfully applied to confined swirling flows. In the study, the flow field characteristics of an aerodynamically stabilized burner system with CIVB are analyzed in great depth. The influence of geometric parameters of the swirl generator was investigated and conclusions concerning the proper burner design of vortex breakdown premix burners are drawn from the experimental results. In particular, the effect of the vortex core with respect to the stability of the swirl stabilized burner is analyzed. The contribution of combustion to vortex breakdown is shown comparing isothermal and reacting flows. The presented data reveals that at the onset of CIVB driven flame transition, the azimuthal vorticity leads to the formation of a closed recirculation bubble at the tip of the internal recirculation zone. Once this bubble propagates upstream, the flame is able to follow and propagate relative to the bulk flow velocity with a velocity far beyond the turbulent flame speed. The interaction of reaction and flow was observed for different volumetric heat releases. The experiments confirm the CIVB theory of the authors, which was initially developed on the basis of a CFD study alone. Both the volume expansion and the baroclinic torque have an effect on whether fast flame propagation occurs. Whereas the volume expansion caused by the heat release stabilizes the flow field and the reaction, the baroclinic torque stimulates flame transition. For upstream propagation the flame tip has to have a position downstream of the stagnation point of the bubble. Else, the required transition inducing force is insufficient and the flame remains stable. In case the flame reaches positions too close or even upstream of the stagnation point, the fast propagation is interrupted or even prohibited. The key finding that the relative position of flame and stagnation bubble governs CIVB is discussed on the basis of high-speed LIF/PIV data as well as chemiluminescence. Since essentially the same behavior has been observed before in tests of a totally different swirler design and flow field, the conclusion can be made that the root cause for CIVB independent of the special geometry has been found.  相似文献   

4.
Atmospheric low swirl burner flow characterization with stereo PIV   总被引:1,自引:0,他引:1  
The lean premixed prevaporized (LPP) burner concept is now used in most of the new generation gas turbines to reduce flame temperature and pollutants by operating near the lean blow-off limit. The common strategy to assure stable combustion is to resort to swirl stabilized flames in the burner. Nevertheless, the vortex breakdown phenomenon in reactive swirling flows is a very complex 3D mechanism, and its dynamics are not yet completely understood. Among the available measurement techniques to analyze such flows, stereo PIV (S-PIV) is now a reliable tool to quantify the instantaneous three velocity components in a plane (2D–3C). It is used in this paper to explore the reactive flow of a small scale, open to atmosphere, LPP burner (50 kW). The burner is designed to produce two distinct topologies (1) that of a conventional high swirl burner and (2) that of a low swirl burner. In addition, the burner produces a lifted flame that allows a good optical access to the whole recirculation zone in both topologies. The flow is studied over a wide range of swirl and Reynolds numbers at different equivalence ratios. Flow statistics are presented for 1,000 S-PIV snapshots at each configuration. In both reactive and cold nonreactive flow, stability diagrams define the domains of the low and high swirl topologies. Due to the relatively simple conception of the physical burner, this information can be easily used for the validation of CFD computations of the burner flow global structure. Near field pressure measurements reveal the presence of peaks in the power spectra, which suggests the presence of periodical coherent features for almost all configurations. Algorithms have been developed to identify and track large periodic traveling coherent structures from the statistically independent S-PIV realizations. Flow temporal evolution is reconstructed with a POD-based method, providing an additional tool for the understanding of flow topologies and numerical codes validation.  相似文献   

5.
Swirl-stabilised combustion is one of the most widely used techniques for flame stabilisation, uses ranging from gas turbine combustors to pulverised coal-fired power stations. In gas turbines, lean premixed systems are of especial importance, giving the ability to produce low NOx systems coupled with wide stability limits. The common element is the swirl burner, which depends on the generation of an aerodynamically formed central recirculation zone (CRZ) and which serves to recycle heat and active chemical species to the root of the flame as well as providing low-velocity regions where the flame speed can match the local flow velocity. Enhanced mixing in and around the CRZ is another beneficial feature. The structure of the CRZ and hence that of the associated flames, stabilisation and mixing processes have shown to be extremely complex, three-dimensional and time dependent. The characteristics of the CRZ depend very strongly on the level of swirl (swirl number), burner configuration, type of flow expansion, Reynolds number (i.e. flowrate) and equivalence ratio. Although numerical methods have had some success when compared to experimental results, the models still have difficulties at medium to high swirl levels, with complex geometries and varied equivalence ratios. This study thus focuses on experimental results obtained to characterise the CRZ formed under varied combustion conditions with different geometries and some variation of swirl number in a generic swirl burner. CRZ behaviour has similarities to the equivalent isothermal state, but is strongly dependent on equivalence ratio, with interesting effects occurring with a high-velocity fuel injector. Partial premixing and combustion cause more substantive changes to the CRZ than pure diffusive combustion.  相似文献   

6.
An experiment in a turbulent non-premixed flat flame was carried out in order to investigate the effect of swirl intensity on the flow and combustion characteristics. First, stream lines and velocity distribution in the flow field were obtained using PIV (Particle Image Velocimetry) method in a model burner. In contrast with the axial flow without swirl, highly swirled air induced streamlines going along the burner tile, and its backward flow was generated by recirculation in the center zone of the flow field. In the combustion, the flame shape with swirled air also became flat and stable along the burner tile with increment of the swirl number. Flame structure was examined by measuring OH and CH radicals intensity and by calculating Damkohler number (Da) and turbulence Reynolds number (Re T ). It appeared that luminescence intensity decreased at higher swirl number due to the recirculated flue gas, and the flat flames were comprised in the wrinkled laminar-flame regime. Backward flow by recirculation of the flue gas widely contacted on the flame front, and decreased the flame temperature and emissions concentration as thermal NO. The homogeneous temperature field due to the widely flat flame was obtained, and the RMS in the high temperature region was rather lower at higher swirl number. Consequently, the stable flat flame with low NO concentration was achieved.  相似文献   

7.
The effects of swirl and downstream wall confinement on an annular nonpremixed flame were investigated using direct numerical simulation (DNS). Fully three-dimensional parallel DNS was performed employing high-order numerical methods and high-fidelity boundary conditions to solve governing equations for variable-density flow and finite-rate Arrhenius chemistry. Three swirl numbers have been examined: 0 (without swirl), 0.4 and 0.8, while the effects of downstream wall confinement have been examined for swirl numbers 0 and 0.4. Results have been presented in terms of instantaneous and time-averaged flow quantities, which have also been analysed using energy spectra and proper orthogonal decomposition (POD). Effects of swirl on the fluid dynamic behaviour of the annular nonpremixed flame were found to be significant. The fluid dynamic behaviour of the flame is greatly affected by the interaction between the geometrical recirculation zone (GRZ) near the jet nozzle exit due to the annular configuration, the central recirculation zone (CRZ) associated with swirl, the unsteady vortical structures in the jet column due to the shear instability, and the downstream wall confinement. Depending on the degree of swirl, the GRZ near the burner mouth and the CRZ may co-exist or one zone may be overwhelmed by another. At a moderate swirl number, the co-existence leads to a flame with strong reaction attached to the burner mouth; while at a high swirl number, the CRZ dominates over the GRZ. The precessing vortex core was observed to exist in the swirling flow fields. The Nusselt number distribution of the annular impinging flames differs from that of round impinging jets. The POD analysis revealed that wall effects on the flow field are mainly associated with the higher mode numbers.  相似文献   

8.
本文采用三种不同亚网格尺度模型对带有V型稳定器的模型燃烧室二维瞬态紊流流动进行了大涡模拟。并在交错网格系下用SIMPLE算法和混合差分格式求解离散方程。数值研究拟不同型式入口速度分布和不同亚网格尺度模型下模型燃烧室二维瞬态紊流流场。计算结果表明不同入口速度分布和不同亚网格尺度模型对瞬态流场和出口速度分布有一定的影响。本文通过数值模拟,揭示了V型稳定器后旋涡的产生和脱落过程。通过计算结果及实验数据的比较可知,本文采用的亚网格尺度模型可以用来模拟模型燃烧室紊流流场及稳定器后面回流区的流动情况。  相似文献   

9.
Flow structure of premixed propane–air swirling jet flames at various combustion regimes was studied experimentally by stereo PIV, CH* chemiluminescence imaging, and pressure probe. For the non-swirling conditions, a nonlinear feedback mechanism of the flame front interaction with ring-like vortices, developing in the jet shear layer, was found to play important role in the stabilisation of the premixed lifted flame. For the studied swirl rates (S = 0.41, 0.7, and 1.0) the determined domain of stable combustion can be divided into three main groups of flame types: attached flames, quasi-tubular flames, and lifted flames. These regimes were studied in details for the case of S = 1.0, and the difference in the flow structure of the vortex breakdown is described. For the quasi-tubular flames an increase of flow precessing above the recirculation zone was observed when increased the stoichiometric coefficient from 0.7 to 1.4. This precessing motion was supposed to be responsible for the observed increase of acoustic noise generation and could drive the transition from the quasi-tubular to the lifted flame regime.  相似文献   

10.
The objective of the present work is to predict compressible swirl flow in the nozzle of air‐jet spinning using the realizable k–ε turbulence model and discuss the effect of the nozzle pressure. The periodic change of flow patterns can be observed. The recirculation zone near the wall of the injectors upstream increases in size and moves gradually upstream, whereas the vortex breakdown in the injector downstream shifts slowly towards the nozzle outlet during the whole period. A low axial velocity in the core region moves gradually away from the centerline, and the magnitude of the center reverse flow and the area occupied by it increase with axial distance due to the vortex breakdown. From the tangential velocity profile, there is a very small free‐vortex zone. With increasing nozzle pressure, the velocity increases and the location of vortex breakdown is moved slightly downward. However, the increase in the velocity tends to decline at nozzle pressure up to a high level. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The focus of this study lies on turbulent incompressible swirling flows with high swirl intensity. A systematic parameter study is conducted to examine the sensitivity of the mean velocity field in a swirl chamber to changes in the Reynolds number, swirl intensity and channel outlet geometry. The investigated parameter range reflects the typical kinematic flow conditions found in heat transfer applications, such as the cooling of the turbine blade known as cyclone cooling. These applications require a swirl intensity, which is typically much higher than necessary for vortex breakdown. The resulting flows are known as flow regime II and III. In comparison to flow regime I, which denotes a swirling flow without vortex breakdown, these flow regimes are characterized by a subcritical behavior. In this context, subcritical means that the flow is affected by the downstream channel section. Based on mean velocity field measurements in various swirl chamber configurations, it is shown that flow regime III is particularly sensitive to these effects. The channel outlet geometry becomes a determining parameter and, therefore, small changes at the outlet can produce entirely different flow patterns in the swirl chamber. In contrast, flow regime II, as well as flow regime I and axial channel flows, are much less sensitive to changes at the channel outlet. The knowledge about the sensitivity of the flow in different flow regimes is highly relevant for the design of a cyclone cooling system. Cooling systems employing flow regime III can result in a weakly robust flow system that may change completely over the operating range. As a remedy, the swirl intensity needs to be decreased so that flow regime III cannot be reached, which, however, reduces the maximum achievable heat transfer in the cooling system. Alternatively, the flow has to transition back from flow regime III to flow regime II or I before the flow leaves the swirl chamber. Two practical methods are presented. These findings can be directly applied in the design processes of future cyclone cooling systems, and other applications of swirling flow.  相似文献   

12.
Several laser diagnostic measurement techniques have been applied to study the lean premixed natural gas/air flames of an industrial swirl burner. This was made possible by equipping the burner with an optical combustion chamber that was installed in the high-pressure test rig facility at the DLR Institute of Combustion Technology in Stuttgart. The burner was operated with preheated air at various operating conditions with pressures up to p = 6 bar and a maximum thermal power of P = 1 MW.The instantaneous planar flow field inside the combustor was studied with particle image velocimetry (PIV). Planar laser induced fluorescence (PLIF) of OH radicals on a single-shot basis was used to determine the shape and the location of the flame front as well as the spatial distribution of reaction products. 1D laser Raman spectroscopy was successfully applied for the measurement of the temperature and the concentration of major species under realistic gas turbine conditions.Results of the flow field analysis show the shape and the size of the main flow regimes: the inflow region, the inner and the outer recirculation zone. The highly turbulent flow field of the inner shear layer is found to be dominated by small and medium sized vortices. High RMS fluctuations of the flow velocity in the exhaust gas indicate the existence of a rotating exhaust gas swirl. From the PLIF images it is seen that the primary reactions happened in the shear layers between inflow and the recirculation zones and that the appearance of the reaction zones changed with flame parameters. The results of the multiscalar Raman measurements show a strong variation of the local mixture fraction allowing conclusions to be drawn about the premix quality. Furthermore, mixing effects of unburnt fuel and air with fully reacted combustion products are studied giving insights into the processes of the turbulence–chemistry interaction.  相似文献   

13.
The effect of pressure on the characteristics of syngas flames is investigated under gas turbine relevant conditions using planar laser induced fluorescence of OH radicals and OH* chemiluminescence imaging. An optically accessible combustor fitted with a swirl burner was operated with two different syngas mixtures, preheated air at 700?K, and pressures ranging from 5 to 20?bars. The thermal load varied from 15 to 25?kW/bar at an equivalence ratios 0.5. The OH-PLIF measurements show that the flames under all conditions exhibited two reaction fronts, one at the shear layer between the inner recirculation zone and the fuel inlet, and one between the fuel inlet and the air nozzle. The more or less continuous reaction front at low pressure turned into a highly corrugated flame front at higher pressures, with isolated regions of ignition and extinction. The probability density distribution of the flame curvature for the mixtures studied showed that the inner and outer flame responded differently to the pressure increase, with the mean curvature magnitude also depending on the mixture composition and thermal load. The measurements clearly shows the limitations associated with the use of OH* chemiluminescence images as a marker for the heat release rate especially in case of syngas mixtures.  相似文献   

14.
The most common and reliable technique used for flame stabilization of industrial combustors with high thermal loads is the application of strongly swirling flows. In addition to stabilization, swirl flames offer the possibility to influence emission characteristics by simply changing the swirl intensity or the type of swirl generation. Despite of these major advantages, swirling flows tend to evolve flow instabilities, that considerably constitute a significant source of noise. In general, noise generation is substantially enhanced, when such a swirling flow is employed for flames. Thus, the minimization of the resulting noise emissions under conservation of the benefit of high ignition stability is one major design challenge for the development of modern swirl stabilized combustion devices. The present investigation makes an attempt to determine mechanisms and processes to influence the noise generation of flames with underlying swirling flows. Therefore, a new burner has been designed, that offers the possibility to vary geometrical parameters as well as the type of swirl generation, typically applied in industrial devices. Experimental data has been acquired for the isothermal flow as well as swirl flames by means of 3-D-LDV-diagnostics comprising the components of long-time averaged mean and rms-velocities as well as spectrally resolved velocity fluctuations for all components. The noise emission data was acquired with microphone probes resulting in sound pressure levels outside the zone of the perceptible fluid flow. Along to the experiments, numerical simulations using RANS and LES have been carried out for isothermal cases with different burner outlet geometries. The results of the measurements show a distinct rise of the sound pressure level, obtained by changing both the test setup from the isothermal into the flame configuration as well as the geometrical parameters. This is also resembled by the LES simulation results. Furthermore, a physical model has been developed from experiments and verified by the LES simulation, that explains the formation of coherent flow structures and allows to separate their contribution to the overall noise emission from ordinary turbulent noise sources.  相似文献   

15.
The influence of mass-flow-rate ratio of inner to outer secondary air on gas–particle flow characteristics was determined in the near-burner region of a centrally fuel-rich swirl coal combustion burner. Velocity and particle volume flux profiles and normalized particle number concentrations were obtained. Peaks in tangential mean velocity and three-dimensional root-mean-square fluctuation velocities were found to decrease as the mass-flow-rate ratio increased. Moreover, the peaks in the mean axial velocities and particle volume flux near the wall increased, whereas those near the chamber axis decreased. Simultaneously, both recirculation zone and swirl number decreased as the mass-flow-rate ratio increased.  相似文献   

16.
In this paper, numerical studies are reported on the effect of flow-flame interaction at large and medium scales and its impact on flame stabilization in a lean premixed low swirl stabilized methane/air flame. The numerical simulations are based on a large eddy simulation (LES) approach with a three-scalar flamelet model with equations for mixture fraction and fuel mass fraction and the level-set G-equation to account respectively for stratification of the mixture, fuel leakage at the trailing edge of the flame, and tracking of the flame front. Distinct frequencies, associated with the flame stabilization process, are identified from point data of LES in the outer and inner shear layers of the burner induced flow field. To understand the effect of the spatial structures related to the observed flow frequencies, a dynamic mode decomposition (DMD) is performed. Based on the analysis of LES data, frequency specific coherent flow structures are extracted along with associated flame structures through an extended version of DMD. The inner shear layer generated vortices are associated with recurring frequency specific coherent structures of both flow and flame and contribute to the flame stabilization in the outer regions of the flow.  相似文献   

17.
Local transport of the flow momentum and scalar admixture in the near-field of turbulent swirling jets (Re = 5,000) has been investigated by using a combination of the particle image velocimetry and planar laser-induced fluorescence methods. Advection and turbulent and molecular diffusions are evaluated based on the measured distributions of the mean velocity and concentration and the Reynolds stresses and fluxes. As has been quantified from the data, the flow swirl intensifies the entrainment of the surrounding fluid and promotes mass and momentum exchange in the outer mixing layer. A superimposed swirl results in the appearance of a wake/recirculation region at the jet axis and, consequently, the formation of an inner shear layer. In contrast to the scalar admixture, the momentum exchange in the inner shear layer is found to be strongly intensified by the swirl. For the jet with the highest considered swirl rate, a substantial portion of the surrounding fluid is found to enter the unsteady central recirculation zone, where it mixes with the jet that is issued from the nozzle. The contribution of the coherent velocity fluctuations, which are induced by large-scale vortex structures, to the turbulent transport has been evaluated based on triple decomposition, which was based on proper orthogonal decomposition analysis of the velocity data sets. For the considered domain of the jet with the highest swirl rate and vortex breakdown, the contributions of detected helical vortex structures, inducing pressing vortex core, to the radial fluxes of the flow momentum and the scalar admixture are found to locally exceed 65% and 80%, respectively.  相似文献   

18.
Delayed detached eddy simulation (DDES) is accompanied with Stereo-PIV measurements to study the non-reacting flow field of a non-premixed swirl burner in this paper. Comparisons of experimental and numerical data show that the DDES results are capable of predicting the mean swirling flow features adequately. The instantaneous flow field is found to be strongly affected by the Kelvin–Helmholtz instability. The flow near the injector involves a complex behavior including a recirculation zone. The 3D flow structure at the burner exit, visualized by the iso-surface of Q-criterion, displays four instability types. The dominant instabilities are vortex ring structures induced by the Kelvin–Helmholtz instability, and finger structures induced by the swirling instability. Pressure fluctuation signal recorded in the swirling jet region show that the computational flow passes through transition instants from RANS to DDES equations. After that, the swirling jet becomes fully developed with an oscillation frequency of 222 Hz.  相似文献   

19.
Large Eddy Simulation (LES) and flamelet-based combustion models were applied to four bluff-body stabilized nonpremixed and partially premixed flames selected from the Sydney flame series, based on Masri’s bluff-body test rig (University of Sydney). Three related non-reacting flow cases were also investigated to assess the performance of the LES solver. Both un-swirled and swirled cases were studied exhibiting different flow features, such as recirculation, jet precessing and vortex breakdown. Due to various fuel compositions, flow rates and swirl numbers, the combustion characteristics of the flames varied greatly. On six meshes with different blocking structure and mesh sizes, good prediction of flow and scalar fields using LES/flamelet approaches and known fuel and oxidizer mass fluxes was achieved. The accuracy of predictions was strongly influenced by the combustion model used. All flames were calculated using at least two modeling strategies. Starting with calculations of isothermal flow cases, simple single flamelet based calculations were carried out for the corresponding reacting cases. The combustion models were then adjusted to fit the requirements of each flame. For all flame calculations good agreement of the main flow features with the measured data was achieved. For purely nonpremixed flames burning attached to the bluff-body’s outer edge, flamelet modeling including strain rate effects provided good results for the flow field and for most scalars. The prediction of a partially premixed swirl flame could only be achieved by applying a flamelet-based progress variable approach.  相似文献   

20.
 Experiments have been performed to quantify the isothermal and combusting flows downstream of a plane sudden-expansion. The detailed measurements correspond to an area expansion ratio of 2.86 and a Reynolds number of 20000, and the combusting flows comprised premixed methane and air over a range of equivalence ratios with emphasis on values of 0.72 and 0.92 which gave rise to smooth and rough combustion, respectively. The results show that the extent of asymmetry of the isothermal flows was reduced by coupling the pressures between the two recirculation regions, and by imposing oscillations at the half-wave or full-wave frequency of the duct, and by combustion. Periodic variations of flame shape, velocities, acceleration, and temperature were observed in sympathy with the dominant pressure oscillation of rough combustion, and the length of the recirculation zones varied from less than 0.5 to 3 step heights. Rich and lean limits were established for combustion within the duct and, whereas the flame blew off at the lean limit, it detached from the expansion at the rich limit and stabilised on the flange at the duct exit. Within these limits, there were ranges of equivalence ratios over which the flame stabilised on one of the two steps with incomplete combustion. The imposition of oscillations narrowed the range of equivalence ratios over which the flame could be stabilised but reduced the equivalence ratio of the lean limit at which the flame could be stabilised on both steps and the effect increased with amplitude and was greatest when the frequency of the imposed oscillations corresponded to that of the half-wave in the duct. An increase in the amplitude of flow oscillations, natural or imposed, caused the concentrations of NO x measured at the duct exit to decrease. Active control of flows with high amplitude of oscillations produced the expected reductions, but not over the entire measured range of equivalence ratio, and the imposition of pressure oscillations at the second harmonic of the half-wave frequency had a greater effect and over a wider range. Received: 14 September 1998 / Accepted: 19 February 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号