首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 359 毫秒
1.
晶粒的取向和变形性质对双晶体循环变形影响的模拟研究   总被引:2,自引:0,他引:2  
应用晶体细观力学方法,分析了双晶体循环变形过程中组元晶粒取向及其变形性质(Bauschinger效应和循环硬化)的影响,发现双晶体的反向屈服及循环硬化行为为主要由组元晶粒性质支配,晶间内应力的影响是次要的,晶粒取向对宏微观应力应变行为有重要的影响,取向对称性较弱或罗硬差别较大的双晶体晶界影响较大。  相似文献   

2.
通过编制率相关有限元用户子程序,采用一个单胞模型研究了FCC晶体中孔洞在单晶及晶界的长大行为,分析了由于晶体取向及变形失配对孔洞长大和聚合的影响。研究结果表明:孔洞的形状和长大方向与晶体取向密切相关;晶界上孔洞的长大速度大于单晶中孔洞的长大速度;晶粒间的变形失配加速了晶界上孔洞的长大趋势,因而使材料易发生沿晶断裂,随着晶粒间取向因子差异的增加,孔洞越易沿着晶界长大。  相似文献   

3.
Ti–6Al–4V is a dual phase material with range of possible complex microstructures. It is well known that mechanical behavior of Ti–6Al–4V is significantly affected by its texture and microstructure morphology. A three-dimensional microstructure-based constitutive model for monotonic and cyclic deformation of duplex Ti–6Al–4V is developed and implemented. The model includes length scale effects associated with dislocation interactions with different microstructure features, and is calibrated using polycrystalline finite element simulations to fit the measured macroscopic responses (overall stress–strain behavior) of a duplex heat treated Ti–6Al–4V alloy subjected to a complex cyclic loading history. Representative microstructures are simulated using a three-dimensional finite element mesh with periodic boundary conditions imposed in all directions. The measured orientation and misorientation distributions of grains of this duplex Ti–6Al–4V are considered, and similar probability density distributions of the crystallographic orientations are assigned to the finite element mesh. The misorientation distributions are then fit using the simulated annealing method. Effects of microstructural features are examined and compared with the experimental data in terms of their influence on the material yield strength. The results are shown to be in good agreement with the experimental observations.  相似文献   

4.
The rate dependent crystallographic finite element program was implemented in ABAQUS as a UMAT for the analysis of the stress distributions near grain boundary in anisotropic bicrystals and tricrystals, taking the different crystallographic orientations into consideration. The numerical results of bicrystals model with the different crystallographic orientations shows that there is a high stress gradient near the grain boundaries. The characteristics of stress structures are dependent on the crystallographic orientations of the two grains. The existing of triple junctions in the tricrystals may result in the stress concentrations, or may not, depending on the crystallographic orientations of the three grains. The conclusion shows that grain boundary with different crystallographic orientations can have different deformation, damage, and faUure behaviors. So it is only on the detail study of the stress distribution can the metal fracture be understood deeply.  相似文献   

5.
Heterogeneous plastic deformation behavior of a coarse-grained Al-0.5%Mg multicrystal was investigated experimentally at the individual grain level. A flat uniaxial tensile specimen consisting of a single layer of millimeter-sized grains was deformed quasi-statically up to an axial strain of 15% at room temperature. The initial local crystallographic orientations of the grains and their evolutions after 5, 12, and 15% plastic strains were measured by electron backscattered diffraction pattern analysis in a scanning electron microscope. The local in-plane plastic strains and rigid body rotations of the grains were measured by correlation of digital optical video images of the specimen surface acquired during the tensile test. It is found that both intergranular and intragranular plastic deformation fields in the aluminum multicrystal specimen under uniaxial tension are highly heterogeneous. Single or double sets of slip-plane traces were predominantly observed on the electro-polished surfaces of the millimeter-sized grains after deformation. The active slip systems associated with these observed slip-plane traces were identified based on the grain orientation after deformation, the Schmid factor, and grain interactions in terms of the slip-plane trace morphology at grain boundaries. It is found that the aluminum multicrystal obeys neither the Sachs nor the Taylor polycrystal deformation models but deforms heterogeneously to favor easy slip transmission and accommodation among the grains.  相似文献   

6.
张哲峰  胡运明 《力学进展》2000,30(3):400-414
比较了铜单晶体和多晶体疲劳行为的异同,提出了研究双晶体疲劳行为的必要性.总结了具有不同晶体取向和晶界的铜双晶体的疲劳行为的最新进展.利用平行晶界铜双晶体的取向因子和晶界影响区,总结了在循环载荷作用下的晶界强化模型.分析了垂直晶界铜双晶体循环塑性变形行为的特点,讨论了组元晶体取向对垂直晶界铜双晶体循环应力-应变曲线的影响.提出了提高单晶体和双晶体疲劳强度的控制因素.  相似文献   

7.
采用率相关的晶体滑移有限元程序对具有不同晶体取向的双晶体晶界附近及三晶体三晶粒交汇处的弹塑性应力场进行了计算,考虑了几何晶界和物理晶界的影响.计算结果表明:双晶体及三晶体考虑几何晶界和物理晶界时,这两种晶界具有相同的应力分布趋势,只是物理晶界比几何晶界的应力集中程度小,双晶体晶界附近有较大的应力梯度,存在应力集中现象.三晶体三晶粒交汇处可能是应力集中之地也可能不造成应力集中,这主要取决于晶粒晶体取向及加载方向.由此可见,要准确理解金属材料的断裂过程,还需要从细观的角度对晶界的力学响应进行细致和深入的研究.  相似文献   

8.
This study deals with the influence of microvoids on the deformation and damage behaviour of ductile materials. Fully three dimensional simulations were performed for different void configurations. The crystallographic orientation of the void surrounding matrix was varied to accurately investigate its impact on void growth. The results of the simulations have shown that the void growth and deformation behaviour on a microscopic scale significantly depend on the crystallographic orientation of an anisotropic matrix material.  相似文献   

9.
本文求解平面应变状态下磁电弹复合材料半平面和刚性导电导磁圆柱压头的二维微动接触问题。假设压头具有良好的导电导磁性,且表面电势和磁势是常数。微动接触依赖载荷的加载历史,所以首先求解单独的法向加载问题,然后在法向加载问题的基础上求解循环变化的切向加载问题。整个接触区可以分为内部的中心粘着区和两个外部的滑移区,其中滑移区满足Coulomb摩擦法则。利用Fourier积分变换,磁电弹半平面的微动接触问题将简化为耦合的Cauchy奇异积分方程组,然后数值离散为线性代数方程组,利用迭代法求解未知的粘着/滑移区尺寸、电荷分布、磁感应强度、法向接触压力和切向接触力。数值算例给出了摩擦系数、总电荷和总磁感应强度对各加载阶段的表面接触应力、电位移和磁感应强度的影响。  相似文献   

10.
The deformation occurring under fretting conditions occurs over length scales of the same order as the grain size. Consequently, the crystallographic orientation of the grains plays a significant role in the deformation response. The cyclic deformation response in the region experiencing fretting predicted by a crystal plasticity model is compared to prediction of an initially isotropic J2 cyclic plasticity theory with nonlinear kinematic hardening. The crystal plasticity model provides enhanced understanding of the fretting fatigue process, especially with regard to the shakedown and ratchetting limits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号