首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T. Xu  F.-S. Lien  H. Ji  F. Zhang 《Shock Waves》2013,23(6):619-634
A dense, solid particle flow is numerically studied at a mesoscale level for a cylindrical shock tube problem. The shock tube consists of a central high pressure gas driver section and an annular solid powder bed with air in void regions as a driven section with its far end adjacent to ambient air. Simulations are conducted to explore the fundamental phenomena, causing clustering of particles and formation of coherent particle jet structures in such a dense solid flow. The influence of a range of parameters is investigated, including driver pressure, particle morphology, particle distribution and powder bed configuration. The results indicate that the physical mechanism responsible for this phenomenon is twofold: the driver gas jet flow induced by the shock wave as it passes through the initial gaps between the particles in the innermost layer of the powder bed, and the chaining of solid particles by inelastic collision. The particle jet forming time is determined as the time when the motion of the outermost particle layer of the powder bed is first detected. The maximum number of particle jets is bounded by the total number of particles in the innermost layer of the powder bed. The number of particle jets is mainly a function of the number of particles in the innermost layer and the mass ratio of the powder bed to the gas in the driver section, or the ratio of powder bed mass (in dimensionless form) to the pressure ratio between the driver and driven sections.  相似文献   

2.
The wall shear stress and the vortex dynamics in a circular impinging jet are investigated experimentally for Re = 1,260 and 2,450. The wall shear stress is obtained at different radial locations from the stagnation point using the polarographic method. The velocity field is given from the time resolved particle image velocimetry (TR‐PIV) technique in both the free jet region and near the wall in the impinging region. The distribution of the momentum thickness is also inspected from the jet exit toward the impinged wall. It is found that the wall shear stress is correlated with the large-scale vortex passing. Both the primary vortices and the secondary structures strongly affect the variation of the wall shear stress. The maximum mean wall shear stress is obtained just upstream from the secondary vortex generation where the primary structures impinge the wall. Spectral analysis and cross-correlations between the wall shear stress fluctuations show that the vortex passing influences the wall shear stress at different locations simultaneously. Analysis of cross-correlations between temporal fluctuations of the wall shear stress and the transverse vorticity brings out the role of different vortical structures on the wall shear stress distribution for the two Reynolds numbers.  相似文献   

3.
Particle concentration and particle size distribution curves have been measured for particle-laden jets of silica gel powder for different loading ratios and air velocities using a Laser Diffraction Method (LDM) and a tomography data transform technique. It was found that the mean particle size at the outer edge of the jet decreases with increasing gas velocity, and that the jet widens with decreasing particle concentration and increasing gas velocity.  相似文献   

4.
钻井液中加入体积分数为1%~3%的钢质粒子在钻头喷嘴处高速喷出冲击岩石,实现了粒子射流冲击和钻头机械联合破岩,有效提高了破岩效率。利用瞬态非线性动力学有限元模拟软件,基于光滑粒子流体动力学(smoothed particle hydrodynamics,SPH)方法,考虑流体对粒子射流冲击的影响,建立了粒子射流冲击破岩的物理模型,获得了粒子射流参数对破岩体积的影响规律,进行了室内实验验证,验证了SPH方法的有效性。结果表明:粒子射流冲击岩石表面形成规则的V型冲击坑;同条件下粒子射流破岩体积是水射流破岩体积的2~4倍;随着粒子射流冲蚀时间的增加,粒子射流破岩体积不断增加,但破岩效率降低;粒子射流压力大于10 MPa后,粒子射流破岩效率迅速增大;喷射角度大于6°后,破岩效率迅速减小。  相似文献   

5.
The structure of particle-laden,underexpanded free jets   总被引:1,自引:0,他引:1  
M. Sommerfeld 《Shock Waves》1994,3(4):299-311
Underexpanded, supersonic gas-particle jets were experimentally studied using the shadowgraph technique in order to examine the influence of the dispersed particles on the shape of the free jet and the structure of the imbedded shock waves. The particle mass loading at the nozzle exit was varied between zero and one, and two sizes of particles (i.e. spherical glass beads) with mean number diameters of 26 and 45 m were used. It was found that the Mach-disc moves upstream towards the orifice with increasing particle loading. The laser light sheet technique was also used to visualize the particle concentration distribution within the particle jet and the spreading rate of the particle jet. Furthermore, the particle velocity along the jet centerline was measured with a modified laser-Doppler anemometer. These measurements revealed that the particles move considerably slower than the gas flow at the nozzle exit. This is mainly the result of the particle inertia, whereby the particles are not accelerated to sonic speed in the converging part of the nozzle.In order to further explore the particle behavior in the free jet, numerical studies were performed by a combined Eulerian/Lagrangian approach for the gas and particle phases, including full coupling between the two phases. The numerical results showed that the application of different particle velocities at the nozzle exit as the inlet conditions, which were below the sonic speed of the gas phase has a significant influence on the free jet shape and the configuration of the shock waves. These results demonstrate that the assumption of equilibrium flow (i.e. zero slip between the phases) at the nozzle exit which has been applied in most of the previous numerical studies is not justified in most cases. Furthermore, the numerical calculations of the free jet shape and the particle velocity along the jet axis were compared with the measurements. Although correlations for rarefaction and compressibility effects in the drag coefficient were taken into account, the particle velocity along the center line was considerably overpredicted.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

6.
等离子熔射粉末颗粒飞行过程格子Boltzmann法仿真   总被引:1,自引:1,他引:1  
为考察等离子熔射过程中粉末的飞行过程,本文在已开发的正六边形7-b it格子Bo ltzm ann(LB)方法等离子射流的温度场和速度场的计算模型基础上,采用单个颗粒加速方程,建立了一个随机算法,实现了对粉末颗粒在射流场中运动过程的仿真;计算结果通过动画演示了粉末飞行的全过程,表明初始位置越靠近射流场出口中心的粉末颗粒加速越充分,并且在射流场一定的情况下,减小粉末颗粒直径可以提高粉末速度,但会降低粉末利用率。  相似文献   

7.
The flow field associated with a jet impinging onto a surface at an inclined angle is investigated using particle image velocimetry (PIV). The results indicate that as a free jet impinges on a flat surface at an inclined angle the jet is turned by and spread laterally onto the impingement surface. The impingement angle of the jet is the dominant parameter in determining the rate of turning/spreading for the jet. The stagnation point is located using the PIV data and is found upstream of the geometric impingement point and upstream of the location of maximum pressure. The location of the stagnation point is a strong function of impingement angle and a weak function of impingement distance and pressure ratio. The location of the stagnation point is compared with the location of maximum pressure and compared to a curve fit for the location of maximum pressure based an exact solution of the Navier–Stokes equations for a non-orthogonal stagnation flow.  相似文献   

8.
ODT (one-dimensional turbulence) simulations of particle-carrier gas interactions are performed in the jet flow configuration. Particles with different diameters are injected onto the centerline of a turbulent air jet. The particles are passive and do not impact the fluid phase. Their radial dispersion and axial velocities are obtained as functions of axial position. The time and length scales of the jet are varied through control of the jet exit velocity and nozzle diameter. Dispersion data at long times of flight for the nozzle diameter (7 mm), particle diameters (60 and 90 µm), and Reynolds numbers (10, 000–30, 000) are analyzed to obtain the Lagrangian particle dispersivity. Flow statistics of the ODT particle model are compared to experimental measurements. It is shown that the particle tracking method is capable of yielding Lagrangian prediction of the dispersive transport of particles in a round jet. In this paper, three particle-eddy interaction models (Type-I, -C, and -IC) are presented to examine the details of particle dispersion and particle-eddy interaction in jet flow.  相似文献   

9.
The effects of jet pulsation on flow field and quasi wall shear stress of an impingement configuration were investigated experimentally. The excitation Strouhal number and amplitude were varied as the most influential parameters. A line-array with three submerged air jets, and a confining plate were used. The flow field analysis by means of time resolved particle image velocimetry shows that the controlled excitation can considerably affect the near-field flow of an impinging jet array. These effects are visualized as organization of the coherent flow structures. Augmentation of the Kelvin–Helmholtz vortices in the jet shear layer depends on the Strouhal number and pulsation magnitude and can be associated with pairing of small scale vortices in the jet. A total maximum of vortex strength was observed when exciting with Sr = 0.82 and coincident high amplitudes.Time resolved interaction between impinging vortices and impingement plate boundary layer due to jet excitation was verified by using an array of 5 μm surface hot wires. Corresponding to the global flow field modification due to periodic jet pulsation, the impact of the vortex rings on the wall boundary layer is highly influenced by the above mentioned excitation parameters and reaches a maximum at Sr = 0.82.  相似文献   

10.
运用全解耦流固耦合理论,建立了水射流冲击岩石介质流固耦合数值分析模型,给出了数值算法,计算分析了考虑和不考虑孔隙流体耦合效应对射流冲击岩石时应力分布的影响规律。结果表明,在射流冲击作用下,如不考虑孔隙流体耦合作用,最大拉应力位于冲击面,离冲击中心径向距离与喷距成正比,最大剪切应力位于岩石冲击中心下部约0.5倍喷嘴直径位置;如考虑孔隙流体耦合作用,最大拉应力位于岩石冲击中心下部约0.4倍喷嘴直径位置。数值分析结果可为水射流破岩机理研究中岩石破坏准则的选择提供依据。  相似文献   

11.
低速轴对称层流射流流动形态和失稳机制的实验研究   总被引:1,自引:1,他引:1  
本文应用染色液和悬浮粒子显示方法,进一步实验研究轴对称层流射流的流动形态及其失稳机制。首次成功地在从一定口径的喷嘴流出的低速轴对称层流射流中观察到环形回流流动。给出了射流随速度演化及实验容器边界对其流动形态影响的显示照片,发现实际射流的轴对称波动及失稳过程正好对应射流在容器底部产生的环形旋涡的生长和破碎过程。本文认为由于实验空间有限尺度对流动的限制改变了原来射流的流动形态和流场空间的拓扑性质,射流与实际边界的相互作用对实际射流的失稳和转捩有重要的影响。  相似文献   

12.
基于对超高压水射流喷头的外部参数定量化分析,给出关于射流核心参数的优选方法,旨在提高水射流效率。首先,根据超高压水射流除锈喷嘴的工作特点,考虑到水的压缩性和空化效应,建立单束定冲角、多束旋转喷头的三维数值模型,通过改变靶距、入射角度、转速等外部特征参数,实施了超高压水射流除锈喷头水动力性能模拟研究。然后,重点分析单束定冲角喷嘴靶距、入射角度对靶面剪切应力、打击压强分布的影响,以及射流等速核长度与最佳射流靶距的关系。发现当靶距等于喷嘴射流等速核长度时,壁面剪切应力达到最佳水平。此外,通过分析高速旋转射流卷吸效应、靶面水垫作用对靶面所受剪切应力、打击压强分布的影响,得到最佳转速范围和对应线速度。初步阐明了射流冲击剥离的机理、单束定冲角以及多束旋转射流的特征参数对射流效果的影响,可为超高压除锈喷头的设计、装配提供参考。  相似文献   

13.
 This paper describes an experimental study of the removal of fine (8.3 μm) polystyrene particles from a glass substrate using a gas jet at normal impingement. In order to avoid transient effects associated with jet startup, the sample was slowly translated under a steady jet. The translating gas jet produces a long clean path that provides very good statistics for exploring the effect of jet parameters. The dependence of the spatial distribution of removal efficiency on the jet pressure ratio, the jet height, and the translation speed is examined. Clean paths greater than 16 jet diameters wide are produced with a jet pressure ratio of 7 translating at 9.0 mm/s at a dimensionless height of 10. The path width is independent of the jet height at high pressure ratios and inversely dependent on the jet translation speed. A harmonic oscillator model for particle detachment accounts for the effect of translation speed. Results suggest that the particles act as nearly-quantized shear stress sensors that provide a direct, though as yet uncalibrated, measure of the surface shear stress. Further, knowledge of the pressure required to remove 50% of the particles from the central region of the path is sufficient to predict the extent of particle removal at higher pressures. Received: 30 June 1997/Accepted: 24 June 1998  相似文献   

14.
基于SPH方法的聚能射流侵彻混凝土靶板数值模拟   总被引:1,自引:0,他引:1  
在完全变光滑长度SPH(smoothed particle hydrodynamics)方法的基础上,利用F.Ott等提出的修正SPH方法处理在求解多介质大密度问题时的数值不稳定性问题,运用Holmquist-Johnson-Cook本构模型处理混凝土在冲击载荷下的变形和损伤问题,对聚能装药射流侵彻混凝土靶板的过程进行了数值模拟,同时利用LS-DYNA非线性有限元程序进行对比,分析了2种方法得到的混凝土von Mises应力变化、射流头部特定节点处的速度变化及裂纹演变,验证了SPH方法的准确性。分析了另外2种不同尺寸的靶板在射流侵彻作用下的破坏形式,结果符合射流侵彻物理规律,表明该方法适合模拟聚爆炸与冲击等大变形破坏等问题。  相似文献   

15.
The impact of gas bubbles on the energetic properties of large-scale vortex structures in a submerged axisymmetric impact jet is studied by means of particle image velocimetry.  相似文献   

16.
流体喷射条件下金属材料冲刷腐蚀的研究进展   总被引:3,自引:0,他引:3  
综述了流体喷射条件下冲刷腐蚀试验装置、冲刷腐蚀机理的研究进展,总结和分析了流速、固相颗粒、攻角等因素对冲刷腐蚀的影响,最后指出了流体喷射下金属材料冲刷腐蚀研究中存在的问题,并展望了流体喷射条件下金属材料冲刷腐蚀的研究方向.  相似文献   

17.
Experimental study was conducted on the vortex shedding process induced by the interaction between a solitary wave and a submerged vertical plate. Particle image velocimetry (PIV) was used for quantitative velocity measurement while a particle tracing technique was used for qualitative flow visualization. Vortices are generated at the tip of each side of the plate. The largest vortices at each side of the plate eventually grow to the size of the water depth. Although the fluid motion under the solitary wave is only translatory, vortices are shed in both the upstream and downstream directions due to the interaction of the generated vortices as well as the vortices with the plate and the bottom. The process can be divided into four phases: the formation of a separated shear layer, the generation and shedding of vortices, the formation of a vertical jet, and the impingement of the jet onto the free surface. Similarity velocity profiles were found both in the separated shear layer and in the vertical jet.  相似文献   

18.
Potential exposure from hazardous dust may be assessed by evaluating the dustiness of the powders being handled. Dustiness is the tendency of a powder to aerosolize with a given input of energy. Previously we used computational fluid dynamics (CFD) to numerically investigate the flow inside the European Standard (EN15051) rotating drum dustiness tester during its operation. The present work extends those CFD studies to the widely used Heubach rotating drum. Air flow characteristics are investigated within the Abe-Kondoh-Nagano k-epsilon turbulence model; the aerosol is incorporated via a Euler-Lagrangian multiphase approach. The air flow inside these drums consists of a well-defined axial jet penetrating relatively quiescent air. The spreading of the Heubach jet results in a fraction of the jet recirculating as back-flow along the drum walls; at high rotation rates, the axial jet becomes unstable. This flow behavior qualitatively differs from the stable EN15051 flow pattern. The aerodynamic instability promotes efficient mixing within the Heubach drum, resulting in higher particle capture efficiencies for particle sizes d < 80 μm.  相似文献   

19.
Entrainment of solid particles by gas jets discharged downwards through slotted nozzles into bubble-free beds of fluidized particles is considered. The gas flow in the jet is calculated for irrotational flow, using a correlation established previously for slot opening as a function of operating variables. The momentum boundary layer thickness and shear stress at the horizontal interface between jet and particles are then calculated by integral boundary layer analysis. The calculated shear stress distributions are consistent with measurements of the momentum of bed particles caused to saltate by the jet, and explain the dependence of particle movement on the various operating variables. The results provide a direct confirmation of a hypothesis due to Owen on the mechanism of saltation.  相似文献   

20.
Measurement of particle concentration by laser Doppler anemometry (LDA) is studied on a vertical air jet seeded by a powder disperser with controlled particle and air flow rates. Particle arrival rate is utilized to retrieve particle number densities from conventional LDA operation. The effect of polydisperse nature of the particles is assessed. Comparisons between measured and estimated particle number densities suggest that only a certain portion of the particle population with a particle size to fringe spacing ratio around unity can be detected. Results indicate that reliable measurement of absolute particle concentration is possible for a particle population of narrow size distribution with an average diameter equivalent to fringe spacing. Present number density measurement technique which is useful for practical purposes with conventional LDA systems is found to yield physically reasonable profiles in both laminar and turbulent regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号