首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A new class of plane steady-state flows of an inviscid incompressible weightless fluid in the presence of point singularities inside the flow and constant-pressure regions is studied. Solutions of the problems of jet and cavitation flow past the atmospheres of these singularities are constructed. At positive cavitation numbers, the singular-point method of Chaplygin and the Efros scheme are used for cavity closure. The case of negative cavitation numbers is also considered. A parametric and numerical analysis of the solutions obtained is carried out. The studied flows can be treated as either jet or circulation flow past curvilinear contours of special shape. They can also be used for constructing new schemes for the closure of developed cavitation zones.  相似文献   

2.
    
With the help of laser produced bubbles in water and high speed photography and holography sophisticated experiments on cavitation bubble dynamics can be conducted. The observation of a bubble vortex ring after jet formation upon collapse of a spherical bubble in front of a plane solid boundary is reported. The vortex ring may expand and contract several times until it disintegrates into a ring of bubbles by some instability finally taking over. A critical discussion of our qualitative understanding of jet formation is included. In a second part the problem of the acoustic cavitation noise spectrum is discussed. Numerically obtained visible cavitation noise plots from a single bubble already resemble those obtained experimentally from acoustic cavitation. A discussion shows that the theory should be extended to self-consistency.  相似文献   

3.
A nonpremixed bluff-body burner flow and flame have been studied using planar flow visualization and species concentration imaging techniques. The burner consists of a central jet of CH 4 in a cylindrical bluff-body and an outer coflowing-air stream. Planar flow visualization, using Mie scattering from seed particles added to the fuel jet, Raman scattering from CH 4 and laser-induced fluorescence of CH combined with Raman scattering of CH 4 provided information on turbulent flow, mixing and combustion. The CH 4 imaging system utilized two cameras, which enhanced the dynamic range of the diagnostic system by a factor of 10 over a single-camera system. It was observed that the fuel jet stagnated on the axis due to interaction with the high velocity air flow. The flow and mixing were found to have significant coherent and noncoherent, large-scale, time-varying structures. The detailed CH 4 Raman and CH fluorescence measurements of an air-dominated bluff-body flame revealed that the stagnation zone governs mixing and flame stability. Through large-scale mixing, the stagnated jet feeds the recirculation zone and also creates a favorable condition to stabilize the flame detached from the bluff-body. The instantaneous flame zone, as defined by CH, was found to be narrow and concentrated in an envelope around the stagnation zone. This narrow flame characteristic is consistent with that observed for jet flames. Although the internal structure of the flame envelops have not yet been defined, these results suggest that this bluff-body flame can be modeled by a flame sheet type approach, where the reaction front is captured by the large-scale structures. This should simplify the development of modeling approaches for these flows since molecular mixing and chemical reaction, which occur within the flame sheet, can be separated from the large-scale mixing process.  相似文献   

4.
A new technique for measuring the growth of instabilities on the surface of liquid jets flowing into gas is demonstrated. A collimated beam of white light illuminates the jet from behind, forming a shadow image. A pair of cylindrical lenses are arranged to provide different magnifications in the streamwise and cross-stream directions. A number of streamwise diameters and one cross-stream diameter are thus captured with maximum resolution in a single image on a charge-coupled device (CCD) electronic camera. A short-duration spark is used to freeze the jet motion. A mask representing the theoretical edge-response of the imaging system is digitally convolved with the cross-stream gray scale data to obtain sub-pixel resolution of the jet edge profile. The method is demonstrated using the well-known capillary jet instability and a ratio of streamwise to cross-stream magnifications of 40. Well-resolved single images show the development of the instability from small perturbations through the formation of the first drop. The system forms an accurate automated method of measuring the development of liquid jet instabilities. It can readily be applied to practical problems including liquid jet atomization.List of symbols a undisturbed jet radius - k nondimensional wavenumber (= 2a/) - Q gas-to-liquid density ratio - r 0 mean jet radius, from initial region of image - R Reynolds number (= 2Ua/) - U mean jet velocity - We Weber number - z streamwise coordinate, origin at jet orifice - temporal growth rate - s measured spatial growth rate - nondimensional temporal growth rate - r absolute value of height of peaks or troughs relative to r 0 - r 1 height of first extremum in a particular record - instability wavelength - liquid viscosity - liquid density - surface tension of liquid-gas interface  相似文献   

5.
Further studies on high-speed liquid diesel fuel jets injected into ambient air conditions have been carried out. Projectile impact has been used as the driving mechanism. A vertical two-stage light gas gun was used as a launcher to provide the high-speed impact. This paper describes the experimental technique and visualization methods that provided a rapid series of jet images in the one shot. A high-speed video camera (106 fps) and shadowgraph optical system were used to obtain visualization. Very interesting and unique phenomena have been discovered and confirmed in this study. These are that multiple high frequency jet pulses are generated within the duration of a single shot impact. The associated multiple jet shock waves have been clearly captured. This characteristic consistently occurs with the smaller conical angle, straight cone nozzles but not with those with a very wide cone angle or curved nozzle profile. An instantaneous jet tip velocity of 2680 m/s (Mach number of 7.86) was the maximum obtained with the 40 nozzle. However, this jet tip velocity can only be sustained for a few microseconds as attenuation is very rapid.Received: 13 December 2003, Accepted: 11 April 2004, Published online: 11 February 2005[/PUBLISHED]K. Pianthong: Correspondence to:   相似文献   

6.
Control of low-speed turbulent separated flow using jet vortex generators   总被引:3,自引:0,他引:3  
A parametric study has been performed with jet vortex generators to determine their effectiveness in controlling flow separation associated with low-speed turbulent flow over a two-dimensional rearward-facing ramp. Results indicate that flow-separation control can be accomplished, with the level of control achieved being a function of jet speed, jet orientation (with respect to the free-stream direction), and jet location (distance from the separation region in the free-stream direction). Compared to slot blowing, jet vortex generators can provide an equivalent level of flow control over a larger spanwise region (for constant jet flow area and speed).Nomenclature C p pressure coefficient, 2(P-P)/V 2 - C Q total flow coefficient, Q/ v - D 0 jet orifice diameter - Q total volumetric flow rate - R Reynolds number based on momentum thickness - u fluctuating velocity component in the free-stream (x) direction - V free-stream flow speed - VR ratio of jet speed to free-stream flow speed - x coordinate along the wall in the free-stream direction - jet inclination angle (angle between the jet axis and the wall) - jet azimuthal angle (angle between the jet axis and the free-stream direction in a horizontal plane) - boundary-layer thickness - momentum thickness - lateral distance between jet orifices A version of this paper was presented at the 12th Symposium on Turbulence, University of Missouri-Rolla, 24–26 Sept. 1990  相似文献   

7.
The digital particle image velocimetry (DPIV) technique has been used to investigate the flow fields of an elliptic jet in cross flow (EJICF). Two different jet orientations are considered; one with the major axis of the ellipse aligned with the cross flow (henceforth referred to as a low aspect ratio (AR) jet), and the other with the major axis normal to the cross flow (henceforth referred to as a high aspect ratio jet). Results show that the vortex-pairing phenomenon is prevalent in the low aspect ratio jet when the velocity ratio (VR)3, and is absent in the high aspect ratio jet regardless of the velocity ratio. The presence of vortex pairing leads to a substantial increase in the leading-edge peak vorticity compared to the lee-side vorticity, which suggests that vortex pairing may play an important role in the entrainment of ambient fluid into the jet body, at least in the near-field region. In the absence of vortex pairing, both the leading-edge and the lee-side peak vorticity increase monotonically with velocity ratio regardless of the aspect ratio. Moreover, time-averaged velocity fields for both AR=0.5 and AR=2 jets reveal the existence of an unstable focus (UF) downstream of the jet, at least for VR2. The strength and the location of this focus is a function of both the velocity ratio and aspect ratio. In addition, time-averaged vorticity fields show a consistently higher peak-averaged vorticity in the low aspect ratio jet than in the high aspect ratio jet. This behavior could be due to a higher curvature of the vortex filament facing the cross flow in the low aspect ratio jet, which through mutual interaction may lead to higher vortex stretching, and therefore higher peak-averaged vorticity.Nomenclature A nozzle or jet cross-sectional area - AR aspect ratio, defined as the ratio of the nozzle cross-stream dimension to its streamwise dimension, =H/L - D characteristic jet diameter (for circular jet only) - Dh hydraulic diameter, =4A/P - Dmajor major axis of an elliptic nozzle - Dminor minor axis of an elliptic nozzle - H cross-stream dimension of the nozzle - L streamwise dimension of the nozzle - P perimeter of the nozzle - Rej jet Reynolds number, =VjD/ - VR velocity ratio, =Vj/V - Vj mean jet velocity - V mean cross-flow velocity - x downstream distance from jet center - X cross-plane vorticity - kinematic viscosity  相似文献   

8.
9.
Acoustic phase (ensemble) averaged measurements were performed in a constant temperature, axisymmetric, Mach 0.6 jet of air. These measurements show that the noise directly radiated by the coherent structure in the jet flow field was responsible for the directivity of the acoustic field.List of symbols D nozzle exit diameter - f frequency, Hz - r radial distance from the jet centerline - SPL sound pressure level (ref.: 20 micro pascals) - St Strouhal number, = f D/U - U jet exit velocity - x distance along the jet axis from the nozzle exit - t time - ensemble average quantity  相似文献   

10.
The intrinsic characteristics of coherent structures in the near field of a plane jet are extensively studied by hot-wire measurements. The instability modes which are responsible for the dynamics of the coherent structures are found to exhibit distinct evolution characters at different transverse positions of the shear layer along downstream direction. The occurrence of multiple peaks in the energy spectra depicts the formation of the sideband instabilities in the early stage of the jet flow field. These sideband instabilities are investigated to be induced by the mechanisms of the nonlinear interactions between neighboring fundamental and subharmonic instabilities, and the feedback effects of the preferred mode near the end of the potential core. Also, from the spatial distributions of the instability modes over the jet flow field, Ho's subharmonic evolution model (1982) is further examined with more interpretations.List of symbols E (f) energy content of streamwise velocity fluctuation at spe cific frequency - f e excitation frequency - f 0 fundamental frequency - f p preferred frequency - f r response frequency in an excited jet - H height of the plane jet at the exit - U streamwise mean velocity - U 0 mean velocity at the nozzle exit - U c mean velocity at the jet center line - u streamwise RMS velocity fluctuation - u p peak streamwise velocity fluctuation alongY axis - u (f) amplitude of streamwise velocity fluctuation at specific frequency - X, Y streamwise and transverse coordinates - Y a transverse position whereU = aU c ,a = 0.99, 0.9,..., etc. - Y c transverse position at the jet center line - 0 initial instability wave length (=U 0/2f 0) - 0 momentum thickness - 0 initial boundary layer momentum thickness A version of this paper was presented at the 11th Symposium on Turbulence, University of Missouri-Rolla, Oct. 17–19, 1988  相似文献   

11.
The characteristics of helium jets injected normally to a swirling air flow are investigated experimentally using laser Doppler and hot-wire anemometers. Two jets with jet-to-crossflow momentum flux ratios of 0.28 and 12.6 are examined. The jets follow a spiral path similar to that found in the swirling air flow alone. Swirl acts to decrease jet penetration, but this is being counteracted by the lighter jet fluid density which is being pressed towards the tube center by the inward pressure gradient. Consequently, in spite of the large variation in momentum flux ratio, jet penetration into the main flow for the two jets investigated is about the same. The presence of the jet is felt only along the spiral path and none at all outside this region. Upstream of the jet, the oncoming swirling flow is essentially unaffected. These characteristics are quite different from jets discharging into a uniform crossflow at about the same momentum flux ratios, and can be attributed to the combined effects of swirl and density difference between the jet fluid and the air stream. Finally, the jets lose their identity in about fifteen jet diameters.List of symbols C mean volume concentration of helium - C j mean volume concentration of helium at jet exit - c fluctuating volume concentration of helium - instantaneous volume concentration of helium - c RMS volume concentration of helium - D j jet nozzle diameter - D T diameter of tube - F flatness factor of c - J = j U j 2 / a U a gn 2 jet-to-crossflow momentum flux ratio - P(c) probability density function of c - r radial coordinate measured from tube centerline - R = D T /2 radius of tube - Re j = D j U j / j jet Reynolds number - S = = tan swirl number - Sk skewness of c - instantaneous axial velocity - u RMS axial velocity - U mean axial velocity - local average mean axial velocity across tube - U j jet exit velocity - U a overall average mean axial velocity across tube - instantaneous circumferential velocity - w RMS circumferential velocity - W mean circumferential velocity - x axial coordinate measured from exit plane of swirler - x 1 axial coordinate measured from centerplane of normal jet - y normal distance measured from tube wall - j jet fluid kinematic viscosity - a air density - j jet fluid density - vane angle (constant)  相似文献   

12.
An experimental investigation was made of a two dimensional flow formed by the interaction of two asymmetric turbulent curved wall jets past a circular cylinder. Measurements were made of velocity and turbulence intensity profiles of the two curved wall jets before the interaction, and those of the merged jet after the interaction. The location of the interaction region of the two opposing curved wall jets and the flow direction of the merged jet were found to depend primarily on the ratio of initial momentum fluxes. The velocity and turbulence intensity profiles of the merged jet were similar to those of the plane turbulent jet. However, the growth rate of the merged jet was approximately 1.5 times larger than that of the plane jet. The influence of the momentum flux ratio on the growth rate appeared to be insignificant.List of symbols C f friction coefficient - h slot height - J p, J c initial momentum flux of a power jet and of a control jet, respectively - P, Pa wall static and atmospheric pressure, respectively - Re Reynolds number based on slot height - Re m local Reynolds number U m y m /v - U local mean velocity - U c velocity along the center line of the merged jet - U m local maximum velocity of the curved wall jet - u r.m.s. value of velocity fluctuations - u u friction velocity - U + U/ut - x distance along the cylinder surface - x distance along the center line of the merged jet - y 1/2, y 1/2 position of y and y where U = U m /2 and U = U c /2, respectively - y + yu t/V - deflection angle of the merged jet (Fig. 4) - interaction angle (Fig. 4) - merged jet angle (Fig. 4) - angle measured from the center line of the cylinder (Fig. 4) - interception angle (Fig. 8) - , normalized coordinates, y/y 1/2 and y/y 1/2, respectively  相似文献   

13.
In this article, an optical method to control the break-up of high-speed liquid jets is proposed. The method consists of focusing the light of a pulsed laser source into the jet behaving as a waveguide. Experiments were performed with the help of a Q-switched frequency doubled Nd:Yag laser (=532 nm). The jet diameter was 48 µm and jet velocities from 100 to 200 m/s. To study the laser-induced water jet break-up, observations of the jet coupled with the high power laser were performed for variable coupling and jet velocity conditions. Experimentally determined wavelength and growth rate of the laser-generated disturbance were also compared with the ones predicted by linear stability theory of free jets.  相似文献   

14.
The article gives the results of an experimental investigation of the geometric structure of an opposing unexpanded jet. It discusses flow conditions with interaction between the jet and sub- and supersonic flows. It is shown that, with the outflow of an unexpanded jet counter to a supersonic flow, there are unstable flow conditions. For stable flow conditions with one roll, dependences are proposed determining the form of a jet in a supersonic opposing flow. A generalized dependence is obtained for the distribution of the pressure at the surface of a body with a jet, flowing out counter to a subsonic flow. The range of change in the determining parameters are the following: Mach numbers at outlet cross section of nozzle, M a = 1 and 3; Mach numbers of opposing flow, M = 0.6–0.9 and 2.9; degree of effectiveness of jet, n = p a /p = 0.5–800 (p a and p are the static pressures at the outlet cross section of the nozzle and in the opposing flow); the ratios of the specific heat capacities, a = = 1.4; the drag temperatures of the jet and the flow, To = Toa = 290°K.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 89–96, January–February, 1977.  相似文献   

15.
The results of an experimental study of the effects of different nozzle heads on turbulent jet noise are analyzed. A configuration of four cylindrical heads, tabbed heads, and chevron nozzles are considered and the decreases in the acoustic-mechanical efficiency of the jet (acoustic power reduction) for jets exposed to different modes of action are compared.It is shown that the effects of tabbed and cylindrical heads, as well as of chevrons, share a common property which is associated with the occurrence of vorticity in the jet source and can be described on the basis of a unified criterion characterizing the action on both the jet flow structure and the jet noise.  相似文献   

16.
17.
The results of an experimental investigation into the laws governing the propagation of a jet of viscous liquid in a medium incorporating a density jump are studied for a Reynolds number range of 25 R 20·103. In addition to jets normal to the jump surface (vertical jets), horizontal jets travelling along the interface between the heavy and light liquids (jump surface) are examined. Photographs are presented, together with dynamic pressure measurements, illustrating properties of the jets studied which are unusual for a uniform medium: the extinction of turbulence, the existence of a limiting jet length, anisotropy of the jet, etc. An approximate explanation (within the framework of boundary-layer theory) is given for the effects in question.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 115–122, May–June, 1972.  相似文献   

18.
Characteristics of supersonic mixing and combustion with hydrogen injection upstream of a cavity flameholder are investigated numerically using hybrid RANS/LES (Reynolds-Averaged Navier–Stokes/Large-Eddy Simulation) method. Two types of inflow boundary layer are considered. One is a laminar-like boundary layer with inflow thickness of $\delta_{\inf } = 0.0$ and the other is a turbulent boundary layer with inflow thickness of $\delta_{\inf } = 2.5\,{\text{mm}}$ . The hybrid RANS/LES method acts as a DES (Detached Eddy Simulation) model for the laminar-like inflow condition and a wall-modeled LES for the turbulent inflow condition where the recycling/rescaling method is adopted. Although the turbulent inflow seems to have just minor influences on the supersonic cavity flow without fuel injection, its effects on the mixing and combustion processes are great. It is found that the unsteady turbulent structures in upstream incoming boundary layer interact with the injection jet, resulting in fluctuations of the upstream recirculation region and bow shock, and induce quick dispersion of the hydrogen fuel jet, which enhances the mixing as well as subsequent combustion.  相似文献   

19.
A new imaging technique was developed that provides two-dimensional images of the mixture fraction (ξ), scalar dissipation rate (χ), temperature (T), and fuel consumption rate in a turbulent non-premixed jet flame. The new method is based on “seeding” nitric oxide (NO) into a particular carbon monoxide–air flame in which it remains passive. It is first demonstrated that the mass fraction of NO is a conserved scalar in the present carbon monoxide–air flame configuration, using both laminar flame calibration experiments and computations with full chemistry. Simultaneous planar laser-induced fluorescence (PLIF) and planar Rayleigh scattering temperature imaging allow a quantitative determination of the local NO mass fraction and hence mixture fraction in the turbulent jet flame. The instantaneous mixture fraction fields in conjunction with the local temperature fields are then used to determine quantitative scalar dissipation rate fields. Advantages of the present technique include an improved signal-to-noise ratio over previous Raman scattering techniques, improved accuracy near the stoichiometric contour because simplifying chemistry assumptions are not required, and the ability to measure ξ and χ in flames experiencing localized extinction. However, the method of measuring ξ based on the passive NO is restricted to dry carbon monoxide–air flames due to the well-controlled flame chemistry. Sample imaging results for ξ, χ, T, and are presented that show high levels of signal-to-noise while resolving the smallest mixing scales of the turbulent flowfield. The application, accuracy, and limitations of the present technique are discussed.  相似文献   

20.
The liquid weight has a significant effect on the detached cavitation flow which is artificially created by gas injection behind an obstacle (probe) in a liquid stream [1], This paper considers two-dimensional cavitation flow created behind a projection on the lower surface of an infinite horizontal wall.1. The problem of the cavitational flow about a plate which forms a small angle with a wall is solved. The liquid is assumed to have weight and to be ideal and incompressible, and its motion is irrotational. The length L of the cavity is considerably greater than the length of the projection. The Ryabushinskii scheme is used.Notation a is the ratio of plate length to cavity half-length - (x) is the ordinate of the cavity contour - f is a quantity inverse to the square of the Froude number expressed in terms of the cavity half-length L/2 - g is the gravitational acceleration - U0 is the flow velocity at infinity - is the cavitation number - p0 is the pressure at infinity at the level of the horizontal wall - Pk is the pressure in the cavity - is the liquid density  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号