首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 857 毫秒
1.
The purpose of this paper is to present formulations for beam elements based on the absolute nodal co-ordinate formulation that can be effectively and efficiently used in the case of thin structural applications. The numerically stiff behaviour resulting from shear terms in existing absolute nodal co-ordinate formulation beam elements that employ the continuum mechanics approach to formulate the elastic forces and the resulting locking phenomenon make these elements less attractive for slender stiff structures. In this investigation, additional shape functions are introduced for an existing spatial absolute nodal co-ordinate formulation beam element in order to obtain higher accuracy when the continuum mechanics approach is used to formulate the elastic forces. For thin structures where bending stiffness can be important in some applications, a lower order cable element is introduced and the performance of this cable element is evaluated by comparing it with existing formulations using several examples. Cables that experience low tension or catenary systems where bending stiffness has an effect on the wave propagation are examples in which the low order cable element can be used. The cable element, which does not have torsional stiffness, can be effectively used in many problems such as in the formulation of the sliding joints in applications such as the spatial pantograph/catenary systems. The numerical study presented in this paper shows that the use of existing implicit time integration methods enables the simulation of multibody systems with a moderate number of thin and stiff finite elements in reasonable CPU time.  相似文献   

2.
陈占魁  罗凯  田强 《力学学报》2021,53(6):1698-1711
为了实现张拉整体结构高效动力学计算, 并考虑其大范围运动中柔性杆局部动态屈曲, 提出了一种受压细长杆动力学降阶模型, 采用五节点弹/扭簧集中质量离散模型等效连续杆的静力学和动力学特性. 首先, 通过静力学等效分析推导了弹簧拉压刚度和扭簧弯曲刚度表达式, 可准确预测杆件受压屈曲和近似预测其后屈曲行为. 第二, 通过动能等效分析推导了集中质量表达式, 可准确预测杆在线速度场下的运动. 第三, 通过弯曲振动固有模态等效分析确定弯曲刚度和节点质量的分布参数, 合适的分布参数取值组合可将降阶模型前两阶固有频率相对误差均降低至1%以内. 第四, 在全局坐标系下建立张拉整体结构瞬态动力学方程, 并利用静力凝聚法实现方程高效迭代求解. 最后, 分别对球形张拉整体结构准静态压缩、模态分析和碰撞动力学进行仿真和实验对比分析, 证明了提出的动力学降阶模型可有效预测张拉整体结构的静力学行为、固有振动特性及瞬态动力学响应, 并分析了结构参数变化对其力学特性的影响规律. 本文提出的动力学等效建模与计算方法, 可望用于软着陆行星探测器、大型可展开空间结构及点阵材料等复杂张拉整体系统的动力学分析与控制.   相似文献   

3.
An analytic model is developed to investigate the wave propagation and sound transmission characteristics of an infinite sandwich structure reinforced by two sets of orthogonal rib-stiffeners when subjected to convective fluid-loaded pressure. The rib-stiffeners are assumed to be identical and uniformly spaced, which can exert not only tensional forces and bending moments but also torsional moments on the facesheets. Inertial terms of the tensional forces, bending moments and torsional moments are introduced to account for inertial effects arising from the mass of the rib-stiffeners. With the surrounding acoustic fluids restricted by the acoustic wave equation, fluid-structure coupling is considered by imposing velocity continuity condition at fluid-panel interfaces. By applying the Bloch theorem for periodic structures, the structural and acoustic responses are expressed in a superposition form of space harmonics for a given wavenumber. The application of the virtual work principle for one periodic element yields two infinite sets of simultaneous algebraic coupled equations, which are numerically solved by truncating them in a finite range insofar as the solution converges. The validity and feasibility of the analytic model is qualified by comparing model predictions with existing results, in which the necessity and advantage of the exact modeling of rib-stiffener motions are also demonstrated. Specifically, the influences of inertial effects arising from rib-stiffener mass, the periodicity spacing of rib-stiffeners, and the airborne as well as structure-borne paths on the transmission of sound across the sandwich structure are quantified and conclusions of significant practical implications are drawn.  相似文献   

4.
On prestress stiffness analysis of bolt-plate contact assemblies   总被引:1,自引:0,他引:1  
Bolt connections are among the most important connections used in structures. The stiffnesses of the bolt and of the connected members are the primary qualities that control the lifetime of the connection. The stiffness of the bolt can be estimated rather easily, in contrast to the member stiffness, but with finite element (FE) and contact analysis, it is possible to find the stiffness of the member. In the case of many connections and for practical applications, it is not suitable to make a full FE analysis. The purpose of the present paper is to find simplified expressions for the stiffness of the member, including the case when the width of the member is limited. The calculation of the stiffness is based on the FE, including the solution to the contact problem, and we express the stiffness as a function of the elastic energy in the structure, whereby the definition of the displacements related to the stiffness is circumvented. The contact analysis is performed using a method where iterations are not necessary, and the results are compared to alternative available results. New practical formulas for the stiffnesses are suggested.  相似文献   

5.
扁壳结构的弯曲与扭转振动控制对该类结构的应用具有重要意义。本文采用不影响壳体结构的粗压电纤维复合材料(MFC)作动器对其弯曲与扭转振动进行主动控制。建立局部表面粘贴MFC作动器的开口圆柱扁壳的动力学解析模型,得到了作动力和作动力矩的解析表达式,分析了扁壳结构上MFC作动器在弯曲与扭转振动控制中的作动机理。针对一开口碳纤维圆柱扁壳,设计了模糊PD控制器,开展了定频与随机激励下壳体弯曲与扭转振动控制试验,并与传统PD控制试验效果进行了对比。结果表明:MFC作动器在壳体弯曲和扭转振动控制方面作动能力突出;模糊PD控制器的控制效果优于传统PD控制器的控制效果。  相似文献   

6.
An equivalent classical plate model of corrugated structures is derived using the variational asymptotic method. Starting from a thin shell theory, we carry out an asymptotic analysis of the strain energy in terms of the smallness of a single corrugation with respect to the characteristic length of macroscopic deformation of the corrugated structure. We obtained the complete set of analytical formulas for effective plate stiffnesses valid for both shallow and deep corrugations. These formulas can reproduce the well-known classical plate stiffnesses when the corrugated structure is degenerated to a flat plate. The extension–bending coupling stiffnesses are obtained the first time. The complete set of relations are also derived for recovering the local fields of corrugated structures.  相似文献   

7.
We consider an L-shaped beam structure and derive all the equations of motion considering also the rotary inertia terms. We show that the equations are decoupled in two motions, namely the in-plane bending and out-of-plane bending with torsion. In neglecting the rotary inertia terms the torsional equation for the secondary beam is fully decoupled from the other equations for out-of-plane motion. A numerical modal analysis was undertaken for two models of the L-shaped beam, considering two different orientations of the secondary beam, and it was shown that the mode shapes can be grouped into these two motions: in-plane bending and out-of-plane motion. We compared the theoretical natural frequencies of the secondary beam in torsion with finite element results which showed some disagreement, and also it was shown that the torsional mode shapes of the secondary beam are coupled with the other out-of-plane motions. These findings confirm that it is necessary to take rotary inertia terms into account for out-of-plane bending. This work is essential in order to perform accurate linear modal analysis on the L-shaped beam structure.  相似文献   

8.
The equilibrium and buckling equations are derived for the lateral buckling of a prismatic straight beam. A consistent finite strain constitutive law is used, which is based on a hyperelastic model for an isotropic material. The kinematics of the cross-sectional deformations are based on a Timoshenko type beam displacement of the cross-sectional plane using Euler angles and two shear finite rotations coupled with warping taken normal to the displaced plane. Also derived are the second order approximations to the displacements, curvatures, twist and internal actions. The constitutive relationships for the internal actions reveal new coupling terms between the bending moments, torsion and bimoment, which are functions of the cross-sectional warping and shear deformations. New Wagner type nonlinear torsion terms are derived which are functions of the warping of the cross-sectional plane, and are coupled to the twisting and shear deformations of the cross-section. Solutions are determined for the lateral buckling of a prismatic monosymmetric beam under pure bending and the flexural–torsional buckling under axial compression. For the flexural–torsional buckling problem it is found that the Euler type column buckling formula is consistent with Haringx’s column buckling formula while the torsional buckling formula is different to conventional equations. The second variation of the total potential is also derived. The effects of shear deformations are explored by examining the non-dimensional lateral buckling equation for a simply supported beam.  相似文献   

9.
A design concept is presented for a macro or microstructure that combines materials with differing thermal expansion to achieve an overall effective expansion that differs substantially from either of the constituents. Near-zero-CTE and isotropic negative expansion designs are achieved by creating compliant structures where overall expansion is compensated by internal bending deformation. Such structures have application where dimensional stability is required when subject to large thermal gradients, e.g. space mirrors. In this paper, we present closed form analytic expressions for prediction of the effective expansion, and consequent internal stressing, of the structure, as well as several finite element simulations that demonstrate the design performance under non-uniform thermal load.  相似文献   

10.
针对夹层板力学性能解析法难于计算复杂结构的夹层板且通用性差的问题,本文采用有限元分析法研究了夹层板性能的等效方法。对夹层板的代表体单元模型施加位移约束,模拟弯曲变形时线性独立的应变分量和弯曲内力;根据夹层板内力与应变的本构关系,求出刚度矩阵;最后由刚度矩阵得出宏观等效弹性常数,从而把夹层板等效成连续材料的单层板单元。将该方法与解析法计算结果进行比较得到的夹层板单元四个主要弹性常数误差在0.2%以内,验证了该方法的有效性;另外采用该方法等效三种典型结构夹层板,比较实际模型和等效模型的弯曲响应,得到的误差均在1.4%以内,表明该方法在不考虑复杂多变的夹芯结构时具有通用性。  相似文献   

11.
Nam-Il Kim  Jaehong Lee 《Meccanica》2013,48(6):1369-1386
The improved torsional analysis of the laminated box beams with single- and double-celled sections subjected to a torsional moment is performed by introducing 14 displacement parameters. For this, a thin-walled laminated box beam theory considering the effects of shear and elastic couplings is presented. The governing equations and the force-displacement relations are derived from the variation of the strain energy. The system of linear algebraic equations with non-symmetric matrix is constructed by introducing the displacement parameters and by transforming the higher order simultaneous differential equations into first order ones. This numerical technique determines eigenmodes corresponding to 12 zero and 2 non-zero eigenvalues and derives displacement functions for displacement parameters based on the undetermined parameter method. Finally, the element stiffness matrix is determined using the member force-displacement relations. The theory developed by this study is validated by comparing several torsional responses from the present approach with those from the finite element beam model using the Lagrangian interpolation polynomials and three-dimensional analysis results using the shell elements of ABAQUS for coupled laminated beams with single- and double-celled sections.  相似文献   

12.
In this work we investigate the existence, stability and bifurcation of periodic motions in an unforced conservative two degree of freedom system. The system models the nonlinear vibrations of an elastic rod which can undergo both torsional and bending modes. Using a variety of perturbation techniques in conjunction with the computer algebra system MACSYMA, we obtain approximate expressions for a diversity of periodic motions, including nonlinear normal modes, elliptic orbits and non-local modes. The latter motions, which involve both bending and torsional motions in a 2:1 ratio, correspond to behavior previously observed in experiments by Cusumano.  相似文献   

13.
Curved geometries and the corresponding near-surface fields typically require a large number of linear computational elements. High-order numerical solvers have been primarily used with low-order meshes. There is a need for curved, high-order computational elements. Typical near-surface meshes consist of hexahedral and/or prismatic elements. The present work studies the employment of quadratic meshes that are relatively coarse for field simulations. Directionally quadratic high-order elements are proposed for the near-surface field regions. The quadratic meshes are compared with the conventional low-order ones in terms of accuracy and efficiency. The cases considered include closed surface volume calculations, as well as computation of gradients of several analytic fields. A special method of adaptive local quadratic meshes is proposed and evaluated. Truncation error analysis for quadratic grids yields comparison with the conventional linear hexahedral/prismatic meshes, which are subject to typical distortions such as stretching, skewness, and torsion.  相似文献   

14.
Exact closed-form expressions are derived for the torsional stiffnesses of spherical rubber bush mountings in the two principal modes of angular deformation, based upon the classical theory of elasticity. Agreement is found, as limiting cases, with the known results for the torsional stiffness and shear stiffness of an elastomer pad of circular cross-section.  相似文献   

15.
Active vibration control for a kind of two-hinged plate is developed in this paper. A finite element model for the hinged plate integrated with distributed piezoelectric sensors and actuators is derived, including bending and torsional modes of vibration. In this model, the hinges are simplified as regular plate elements to facilitate operation. The state space representations for bending and torsional vibrations are obtained. Based on two low-order models of the bending and torsional motion, two H ∞ robust controllers are designed for suppressing the vibrations of the bending and torsional modes, respectively. The simulation results indicate the effectiveness and feasibility of the designed H ∞ controllers. The vibration magnitudes of the low-order modes can be reduced without affecting the high frequency modes.  相似文献   

16.
There is no consensus of opinion on the correct expressions for shear stiffness, even in the apparently simple case of rectangular sections made from homogeneous isotropic material. A general beam theory has been proposed which is applicable to all regular prismatic systems. This has been used to find the appropriate beam-like flexibilities for trusses. The same approach can be used for normal beams, giving values for the shear stiffnesses of various cross-sections as particular results of a general theory embracing torsion, binding, extension and shear of regular prismatic systems.  相似文献   

17.
一阶广义梁理论描述通过运用加入弯曲、扭转和畸变函数的普通非耦合微分方程组解决棱柱状结构行为.二阶广义梁理论,是添加上偏离力效果的微分方程. 通过引入纵向膜弯矩和膜剪应变虚功到广义梁理论系统当中,完全展开的三阶广义梁方程组将以一串大型离散迭代函数且能转化为可用于数值分析的若干切线刚度矩阵形式出现. 通过膜应力派生出三阶分项ijrkvσijrkvτ并结合先进数值技术寻求全解,三阶广义梁理论提供了一种严谨和高效的数值工具用于调查薄壁结构后屈曲大变形行为.  相似文献   

18.
本文对预应力混凝土T形梁桥动力分析建方法进行了详细研究。将桥梁划分为梁段单元,考虑T形梁的弯曲、自由扭转、约束扭转变形以及桥梁局部构件(如横隔板等)的作用,由能量原理建立结构的单元特性矩阵。实践应用表明,本文提出了方法使用方便,适合于计算机求解,是装配式预应力混凝土T形梁桥结构动力分析的一种实用可靠的方法。  相似文献   

19.
龚耀清  陶赛 《力学与实践》2016,38(6):664-669
为了分析开口厚壁截面短构件的约束扭转问题,采用统一分析梁模型与有限节线法,对T形和L形厚壁截面短构件约束扭转时横截面的翘曲和应力分布情况等问题进行了分析研究.算例计算结果表明:开口厚壁截面短构件存在与其横截面形心位置不一致的扭转(弯曲)中心,构件在不过扭转中心的外力作用下会产生弯扭耦合变形,其横截面将产生不均匀翘曲,横截面上的翘曲正应力和扭转剪应力均呈非线性分布.  相似文献   

20.
本文采用两套变量构造有限元试函数空间,在单元内部要求试函数精确满足平衡微分方程,在单元边界上对位移和转角分别用Peano升阶函数插值,然后利用广义变分原理建立了一种薄板弯曲问题的P型杂交解析有限方法,与常规有限元法相比,该方法不心进行过细的网格剖分,通过增加单元插值多项式的阶数P来提高精度,此外,该方法还具有积分计算只需在单元边界上进行、单元钢度矩阵和载荷向量具有嵌入结构、协调程度可以自动控制等优  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号