首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
ABSTRACT

For the problems of the optimal elastic design with prescribed maximum deflection, a variational formulation is proposed, with reference to the one-or two-dimensional bending structures.

Necessary optimum conditions are found, and the physical features of the optimal solutions are discussed for the “absolute” minimum cost problems, and, when dealing with beams, for the solutions with piece-wise constant design function.

Some examples are solved by using numerical methods that are directly derived from the variational formulation.  相似文献   

2.
When using H∞ techniques to design decentralized controllers for large systems, the whole system is divided into subsystems, which are analysed using H∞ control theorybefore being recombined. An analogy was established with substructural analysis instructural mechanics, in which H∞ decentralized control theory corresponds to substructuralmodal synthesis theory so that the optimal H∞ norm of the whole system corresponds to thefundamental vibration frequency of the whole structure. Hence, modal synthesismethodology and the extended Wittrick-Williams algorithm were transplanted from structuralmechanics to compute the optimal H∞ norm of the control system. The orthogonality and theexpansion theorem of eigenfunctions of the subsystems H~ control are presented in part (I)of the paper. The modal synthesis method for computation of the optimal H∞ norm ofdecentralized control systems and numerical examples are presented in part (Ⅱ).  相似文献   

3.
When using H∞ techniques to design decentralized controllers for large systems,the whole system is divided into subsystems, which are analysed using H∞ control theorybefore being recombined. An analogy was established with substructural analysis instructural mechanics, in which H∞ decentralized control theory corresponds to substructuralmodal synthesis theory so that the optimal H∞ norm of the whole system corresponds to thefundamental vibration frequency of the whole structure. Hence, modal synthesismethodology and the extended Wittrick-Williams algorithm were transplanted from structuralmechanics to compute the optimal H∞ norm of the control system. The orthogonality and theexpansion theorem of eigenfunctions of the subsystems H∞ control are presented in part(I) of the paper. The modal synthesis method for computation of the optimal H∞ norm ofdecentralized control systems and numerical examples are presented in part (Ⅱ).  相似文献   

4.

This paper deals with the design of nonlinear controllers for the wing-rock phenomenon of a delta wing aircraft. A fifth order dynamic model is used to describe this phenomenon. A state transformation is introduced such that the transformed dynamic model is in a form which is suitable for a variety of control designs. A feedback linearization control scheme and a sliding-mode control (SMC) scheme are then proposed to suppress wing rock oscillations. It is shown that the two controllers successfully suppress the undesired oscillations and guarantee the asymptotic convergence of all system trajectories to their desired values. The effectiveness of the proposed controllers is verified through simulation studies.

  相似文献   

5.
Abstract

The article deals with the design and properties of generalized predictive control (GPC) for path control of redundant parallel robots. Redundant parallel classification means redundant number of actuators, i.e., more actuators than degrees of freedom of the robot. Control of such structures suffers from several new control problems like potential inconsistency of steady state positions or nonuniqueness of control actions. The article explains classical direct derivation of GPC and its modification based on square root two-step design of control actions for solving the control problems. As an example for verification of algorithms, a prototype of a planar redundant parallel robot is used. Both design approaches are compared and several possibilities of extensions are presented for taking into consideration additional requirements, like smooth course of actuators or fulfillment of the anti-backlash condition.  相似文献   

6.
Abstract

This paper deals with a broad class of optimum frame design problems amenable to the mathematical model of linear programming: allowance is made for self-weight (design dependent loads) and technological constraints “assigned minimum for yield moments, prescribed variation laws of yield moments along members”. Two alternative “static” formulations and the corresponding dual “kinematic” formulations are discussed and compared to each other. The main limit design theorems, generalized to the present broader context, are derived on the basis of duality theory of linear programming. Numerical examples, worked out by means of standard LP computer codes, are given.  相似文献   

7.
Abstract

Optimal design of nonuniform, elastic, continuous columns with an unspecified number of available interior supports is considered. Subject to prescribed Euler buckling load, column length, and a prebuckling stress constraint, we detennine the optimal design and the optimal number and positions of interior supports in such a way as to minimize the total cost of column material and interior supports. Specific results are presented for columns with geometrically similar cross-sections.  相似文献   

8.
Abstract

In his paper we consider the problem of designing a feedback controller for a thermal fluid. Any practical feedback controller for a fluid flow system must incorporate some type of state estimator. Moreover, regardless of the approach, one must introduce approximations at some point in the analysis. The method presented here uses distributed parameter control theory to guide the design and approximation of practical slate estimators. Wc use finite clement techniques to approximate optimal infinite dimensional controllers based on linear quadratic Gaussian lpar;LQG) and MinMax theory for the Bonssincsq equations. These designs are then compared to full state feedback. We present several numerical experiments and we describe how these techniques can also be applied to sensor placement problems.  相似文献   

9.
ABSTRACT

The complementary energy approach is used to establish the basic principles in terms of generalized stress components for the optimum design of elastic structures against buckling. The necessary condition of optlmality is derived and its sufficiency is established for those structures whose compliance densities are convex and which are statically determinate. By way of illustration, the development is used to rederive the governing equations for the optimal design of a column against lateral buckling. The formulation is further applied to obtain optimum design of thin-walled beams against lateral-torsional buckling.  相似文献   

10.
Abstract

In this paper, details of the design work for a tuned vibration absorber to be used on a hollow cylindrical structure is presented. The vibration problem is of resonant type and the tuned vibration absorber is designed to suppress the displacement vibration response of the free end of the slender hollow structure dominated by the contribution of its lowest transverse vibration modes. The structure is modeled using a commercial finite element software. Finite element model of the structure is verified using experimentally obtained frequency response functions and modal parameters. Effective parameters of the tuned vibration absorber design are then determined based on finite element analysis simulations of the vibration suppression performance of the tuned vibration absorber as it is used on the structure. Details of the tuned vibration absorber design are determined and a prototype is fabricated. Prototype tuned vibration absorber is then characterized experimentally both as a standalone system and also as it is used on the main structure. Vibration reduction performance of the physical prototype of the tuned vibration absorber is also compared with its vibration reduction performance estimated from finite element analysis simulations so that the analysis based design process can be validated.

Communicated by Dumitru Caruntu.  相似文献   

11.
12.
ABSTRACT

Stochastic dynamic response of multiple degree of freedom (MDOF) subsystems that are attached at multiple points to an MDOF supporting structure that is subjected to seismic excitation is obtained by using a modal time domain random vibration approach. An earthquake is modeled as a nonstationary, nonwhite, vector random process that has a realistic spectral shape and finite ground displacement, velocity, and acceleration. Analyses of secondary systems are decoupled from the primary system without loss of accuracy when the cascading assumption is appropriate. This makes the design process of subsystems convenient and efficient. When tuning occurs, cascading assumptions are no longer appropriate. Previously obtained results for the modal properties of combined systems in terms of modal properties of the primary system and subsystems are then utilized. Results account for tuning spatial coupling in terms of stiffness and inertia. Exact analytical expressions are obtained for the elements of the state transition matrix and the evolutionary covariance matrix of various responses. The solution is exact, within the limitations of modal analysis, since all the cross terms between modal coordinates are considered. Finally the capabilities of this approach are illustrated through analysis of an example.  相似文献   

13.
Gonabadi  H.  Oila  A.  Yadav  A.  Bull  S. 《Experimental Mechanics》2022,62(4):585-602
Background

Fatigue failure criteria for fibre reinforced polymer composites used in the design of marine structures are based on the micromechanical behaviour (e.g. stiffness properties) of their constituents. In the literature, there is a lack of information regarding the stiffness degradation of fibres, polymer matrix and fibre/matrix interface regions affected by environmental fatigue.

Objective

The aim of present study is to characterize the stiffness properties of composite constituents using the nanoindentation technique when fatigue failure of composites is due to the combined effect of sea water exposure and cyclic mechanical loads.

Methods

In the present study, the nanoindentation technique was used to characterize the stiffness properties of composite constituents where the effects of neighbouring phases, material pile up and viscoplasticity properties of the polymer matrix are corrected by finite element simulation.

Results

The use of finite element simulation in conjunction with nanoindentation test data, results in more accurate estimation of projected indented area which is required for measuring the properties of composite constituents. In addition, finite element simulation provides a greater understanding of the stress transfer between composite constituents during the nanoindentation process.

Conclusions

Results of nanoindentation testing on the composite microstructure of environmentally fatigue failed composite test coupons establish a strong link to the stiffness degradation of the fiber/matrix interface regions, verifying the degradation of composite constituents identified by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analysis.

  相似文献   

14.
Large cable net structures have been widely applied in aerospace engineering due to the feature of light-weight, high packaging efficiency, and high thermal stability. Structural vibrations induced by a variety of disturbances are inevitable in the space environment, resulting in the requirement of effective vibration control strategies for large cable net structures. Since the large cable net structures have many closely spaced vibrational modes in the range of low frequencies, traditional modal based control may cause modal truncation and spillover problems. In this paper, a wave-based boundary control strategy is adopted and its effectiveness to control the vibration of cable net structures is investigated, by transfer function analysis and numerical methods. It is found that the structural vibration can be absolutely resisted by applying the wave-based boundary controllers onto all the exterior nodes, when disturbances come from the external boundaries of the cable net. Our results in this paper can provide a theoretical basis for the vibration control of large cable net structures.  相似文献   

15.
ABSTRACT

The elements of a structure whose forces and/or displacements are limited by prescribed conditions are called “conditional joints.” This paper deals with mechanical and mathematical models of conditional joints and shows that their behavior can be characterized by relationships similar to the constitutive equations of ideal plastic and ideal locking materials. It is shown that the analysis of limit states and state changes of structures with conditional joints may also be carried out by means of theorems which are known in the theory of structures of ideal plastic and ideal locking materials.  相似文献   

16.
Zhang  Rui  Xu  Bin  Zhao  Wanliang 《Nonlinear dynamics》2020,101(4):2223-2234

This paper addresses the finite-time prescribed performance control of MEMS gyroscopes. From the perspective of practical engineering, this paper arranges the desirable transient and steady-state performances according to the engineering requirements in the controller design procedure. For the tracking performance, prescribed performance control is studied to limited the steady-state error and the maximum overshoot. For the prescribed settling time, super-twisting sliding mode control and nonsingular terminal sliding mode control are employed to achieve finite-time convergence, respectively. The system stability is verified via Lyapunov approach. Through simulation tests, it is demonstrated that prescribed performance and finite-time convergence can be obtained under the proposed control scheme.

  相似文献   

17.
ABSTRACT

A “design component method” that provides a unified and systematic organization of design sensitivity analysis for built-up structures is developed and implemented. Both conventional design variables, such as thickness and cross-sectional area, and shape design variables of components of built-up structures are considered. It is shown that design of components of built-up structures can be characterized and system design sensitivity expressions obtained by simply adding contributions from each component. The method leads to a systematic organization of computations for design sensitivity analysis that is similar to the way in which computations are organized within a finite element code.  相似文献   

18.
This paper discusses the design of fuzzy PID type controllers (FPIDC) to improve seismic control performance of a nonlinear structural system with an active tuned mass damper (ATMD) against earthquakes. Since structural systems have nonlinearities and uncertainties, fuzzy-based controllers are adequate because of their robust character and satisfactory performance in active structural control. The main advantages of this controller are the ability to handle nonlinearities and uncertainties effectively. In the literature, various structures for fuzzy PID (including PI and PD) controllers have been proposed. In order to obtain proportional, integral and derivative control actions altogether, it is intuitive and convenient to combine PI and PD actions to form a fuzzy PID controller. The simulated system has fifteen degrees of freedom and is modeled using nonlinear behavior of the base–structure interaction. The system is then simulated against the ground motion of the Northridge earthquake (M w =6.7) in USA on 17 January, 1994. Finally, the time history of the storey displacements, accelerations, ATMD displacements, control voltage and frequency responses of both the uncontrolled and controlled cases are presented. The ground motion recorded of the El-Centro and Kocaeli earthquakes has been used to evaluate the effectiveness of the proposed control algorithm. The robustness of the controller has been checked through the uncertainty in stiffness of the structure. Simulation results exhibit that superior vibration suppression is achieved by the use of designed fuzzy PID type controllers.  相似文献   

19.
Qin  S.  Ma  Q.  Liu  G.  Zhu  H.  Ma  S. 《Experimental Mechanics》2021,61(8):1271-1280
Background:

Traditional videometric method can not be used in the measurement of large flexible cable-net structure for its large overall size and small partial size.

Objective

A videometrics technique was proposed in this work to measure the topography and deformation of a large cable net structure.

Methods

Tiny spots with high brightness (and large gray gradient) are used to mark the cable net nodes. By arranging the imaging light path properly, the light spot markers can be enlarged and accurately identified in the captured images.

Results

The relationship between the imaging parameters and the gray distribution of the light spot markers were derived and verified. And a topographical measurement experiment of a cable net structure was carried out with the proposed videometrics technique.

Conclusions

The topography/deformation of the cable net can be measured with tiny-light spot markers, and the effectiveness and robustness of the technique on topography and deformation measurement of large cable-net structures are demonstrated.

  相似文献   

20.
Jin  Y.  Ren  Q.  Liu  J.  Zhang  Y.  Zheng  H.  Zhao  P. 《Experimental Mechanics》2022,62(5):761-767
Background

As a one-atom-thick material, the mechanical loading of graphene in large scale remains a challenge, and the maximum tensile strain that can be realized is through a flexible substrate, but only with a value of 1.8% due to the weak interfacial stress transfer.

Objective

Aims to illustrate the interface reinforcement brought by formvar resins as a buffering layer between graphene and substrates.

Methods

Single crystal graphene transferred to different substrates, applied with uniaxial stretching to compare the interface strength, and finite element analysis was performed to simulate tensile process for studying the influence of Poisson’s ratio of the buffering layer for interface reinforcement.

Results

In this work we use formvar resins as a buffering layer to achieve a maximum uniaxial tensile strain of 3.3% in graphene, close to the theoretical limit (3.7%) that graphene can achieve by flexible substrate stretching. The interface reinforcement by formvar is significantly higher than that by other polymers, which is attributed to the liquid–solid phase transition of formvar for more conformal interfacial contact and its suitable Poisson’s ratio with graphene to avoid its buckling along the transverse direction.

Conclusions

We believe that these results can provide guidance for the design of substrates and interfaces for graphene loading, as well as the support for mechanics analysis of graphene-based flexible electronic devices.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号