首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analytical procedure for the evaluation of the elastic–plastic stiffness behaviour of spot welded joints is presented. The procedure is based on a new model of spot weld region: a circular plate having variable thickness with a central rigid nugget, which is resolved using an original analytical method.The closed-form solution allows to describe the displacement of a rigid nugget when an axial orthogonal load is applied on the plate while plasticity and large deflections are present. The goal is to reach a reliable spot weld region model which can be used as the basis to develop a spot weld element in FE analysis even when plasticity and large deflections are in effect.The procedure is as completely original as no other can be found in the technical literature, and it has been applied to some examples of plates usually employed for spot weld analysis. The analytical results obtained by using the new general relations precisely match those obtained modelling spot weld area by FEA.  相似文献   

2.
现有残余应力计算方法未能考虑材料塑性变形和焊接接头刚度不匹配的影响,使得焊接残余应力计算结果和实际残余应力存在较大偏差.在2219-T87铝合金钨极氩弧焊焊接头残余应力测试基础上,提出一种基于非线性有限元和材料弹性模量分区的残余应力—释放应变曲线的残余应力计算方法,研究了材料塑性变形和接头刚度不匹配对焊接残余应力计算的影响.结果表明,焊接接头中非均质材料塑性不匹配可以引起对于残余应力计算的较大误差;材料塑性变形对残余应力的影响大于接头刚度不匹配对残余应力的影响.所提出方法修正了传统方法在焊接接头的残余应力计算中由于未考虑接头非均质材料塑性不匹配而引起的误差.  相似文献   

3.
The paper deals with joint element model used in crashworthiness simulations. The first part of the paper is dedicated to the formulation of a new “global” finite element for spotweld modelling. The mechanical behaviour of the joint is elastic–plastic type and damage is taken into account to model the failure of the welded area. The second part of the paper concerns a new experimental procedure for joint strength analysis in pure and mixed modes I/II and for joint model characterisation. Experiment is based on Arcan principle and results are compared to open literature. In the last part of the paper, the parameters of the new joint model are identified using experiments and used for several shapes of spot-welded specimens. The model predicts reasonably the elastic–plastic part of the response but is unable to predict the post-peak response observed especially in the case of pure shear.  相似文献   

4.
The influence of the mismatch between material properties and constraint on the plastic deformation behaviour of the heat affected zone of welds in high strength steels is investigated in this study, using finite element simulations. An elastoplastic implicit three-dimensional finite element code (EPIM3D) was used in the analysis. The paper presents the mechanical model of the code and the methodology used for the numerical simulation of the tensile test of welded joints. Numerical results of the tensile test of welded samples with different hypothetical widths for the Heat Affected Zone and various material mismatch levels are shown. The analysis concerns the overall strength and ductility of the joint and in relation to the plastic behaviour of the heat affected zone. The influence of the yield stress, tensile strength and constraint on the stress and plastic strain distribution in the soft heat affected zone is also discussed.  相似文献   

5.
The behaviour of a self-piercing riveted connection was investigated experimentally and numerically. An extensive experimental programme was conducted on elementary riveted joints in aluminium alloy AA6060 in two different tempers, T4 and T6. The experimental programme was focused on the influence of important model parameters such as thickness of the plates, geometry of the specimens, material properties of the plates and loading conditions. An accurate 3D numerical model of different types of riveted connections subjected to various loading conditions was generated based on the results of the numerical simulation of the riveting process. A new algorithm was generated in order to transfer all the information from the 2D numerical model of the riveting process to the 3D numerical model of the connection. Thus, the 3D model was initialized with the proper deformed shape and the current post-riveting stress–strain state. The residual stresses and the local changes in material properties due to the riveting process were an important factor in order to get the correct structural behaviour of the model. The simulations have been carried out using the explicit finite element code LS-DYNA. The model was validated against the experimental results in order to get the correct deformation modes and the force–displacement characteristics. The numerical force–displacement curves fitted the experimental ones with reasonable accuracy. Furthermore, the model seemed to be able to describe the correct structural behaviour and thus the failure mechanisms of the self-piercing riveted connections.  相似文献   

6.
关于非均质焊接接头中的J积分断裂判据   总被引:5,自引:0,他引:5  
采用平面应力弹塑性大变形有限元方法、云纹干涉法以及云纹干涉-有限元混合法,从J积分守恒性下J主导有效性两方面仔细考试了非均质焊接头中的J积分断裂判据。结果表明,至少对于该文所研究的情形而言,J积分守恒性及J主导有效性均是有条件存在的。因此,在非均质焊接接头中直接应用J积分作为断裂判据是不合适的。  相似文献   

7.
In this paper a new finite element (FE) formulation to simulate embedded strong discontinuity for the study of the fracture process in brittle or quasi-brittle solids is presented. A homogeneous discontinuity is considered to be present in a cracked finite element with the possibility to take into account the opening and the sliding phenomena which can occur across the crack faces. In such a context a new simple stress-based implementation of the discontinuous displacement field is proposed by an appropriate stress field correction introduced at the Gauss points level in order to simulate, in a fashion typical of an elastic–plastic classical FE formulation, the mechanical effects of the bridging and friction stresses due to crack faces opening and sliding which can occur during the loading–unloading process structural component or solid being analysed. The proposed formulation does not need to introduce special or modified shape functions to reproduce discontinuous displacement field but simply relaxes the stress field in an appropriate fashion. Both linear elastic and elastic–plastic behaviour of the non-cracked material can be considered. Several 2D problems are presented and solved by the proposed procedure in order to predict load–displacement curves of brittle structures as well as crack patterns that develop during the loading process.The proposed discontinuous new FE formulation gives the advantages to be simple, computationally economic and to keep internal continuity of the numerical FE model; furthermore the developed algorithm can be easily implemented in standard FE programs as a standard plasticity model.  相似文献   

8.
方自虎  洪博恺 《力学季刊》2016,37(4):769-776
为了分析RC框架结构的非线性滞回性能,基于平面8节点单元,本文提出了一个新的针对受循环荷载作用钢筋混凝土的梁柱节点单元.单元中梁与节点交界面和柱与节点交界面被划分成“节点截面”和“梁柱截面”,节点核心区的力学性能由8节点单元描述,而梁柱受力钢筋与节点核心区的粘结滑移由存在于“节点截面”和“梁柱截面”之间的8根弹簧控制,梁柱与节点之间的剪切由4根剪切弹簧表示.单元具有4个外节点和8个内节点,每个内节点具有2个自由度,每个外节点具有3个自由度,该3个自由度与普通梁单元一致,从而确保本单元能够同普通一维梁柱单元一起进行钢筋混凝土结构平面非线性分析.通过将内节点上的自由度依附到外节点上,单元在数值表现上具有4个节点和28个自由度.通过对比试验和模拟分析结果,验证了本模型适合于循环荷载作用下平面框架结构的非线性响应分析.  相似文献   

9.
The mechanics of double-lap joints with unidirectional ([016]) and quasi-isotropic ([0/90/?45/45]2S) composite adherends under tensile loading are investigated experimentally using moiré interferometry, numerically with a finite element method and analytically through a one-dimensional closed-form solution. Full-field moiré interferometry was employed to determine in-plane deformations of the edge surface of the joint overlaps. A linear-elastic two-dimensional finite element model was developed for comparison with the experimental results and to provide deformation and stress distributions for the joints. Shear-lag solutions, with and without the inclusion of shear deformations of the adherend, were applied to the prediction of the adhesive shear stress distributions. These stress distributions and mechanics of the joints are discussed in detail using the results obtained from experimental, numerical and theoretical analyses.  相似文献   

10.
Some refractory linings of metallurgical vessels consist of masonry without mortar. To describe the mechanical behaviour of these large-sized structures, it is necessary to use an equivalent material instead of a model that comprises all the bricks and joints involved. The properties of the equivalent material depend on the opening and closure mechanism of joints. In this paper, four joint states which are the combination of open/closed states of bed and head joints are identified, and the corresponding equivalent elastic properties are determined accordingly using homogenisation techniques. The transition criterion between these joint states is based on the unilateral contact conditions written in terms of macroscopic strain. The developed model is then compared to an in-plane biaxial compression test. The numerical and experimental results are in good agreement.  相似文献   

11.
This paper is focused on the dynamic formulation of mechanical joints using different approaches that lead to different models with different numbers of degrees of freedom. Some of these formulations allow for capturing the joint deformations using a discrete elastic model while the others are continuum-based and capture joint deformation modes that cannot be captured using the discrete elastic joint models. Specifically, three types of joint formulations are considered in this investigation; the ideal, compliant discrete element, and compliant continuum-based joint models. The ideal joint formulation, which does not allow for deformation degrees of freedom in the case of rigid body or small deformation analysis, requires introducing a set of algebraic constraint equations that can be handled in computational multibody system (MBS) algorithms using two fundamentally different approaches: constrained dynamics approach and penalty method. When the constrained dynamics approach is used, the constraint equations must be satisfied at the position, velocity, and acceleration levels. The penalty method, on the other hand, ensures that the algebraic equations are satisfied at the position level only. In the compliant discrete element joint formulation, no constraint conditions are used; instead the connectivity conditions between bodies are enforced using forces that can be defined in their most general form in MBS algorithms using bushing elements that allow for the definition of general nonlinear forces and moments. The new compliant continuum-based joint formulation, which is based on the finite element (FE) absolute nodal coordinate formulation (ANCF), has several advantages: (1) It captures modes of joint deformations that cannot be captured using the compliant discrete joint models; (2) It leads to linear connectivity conditions, thereby allowing for the elimination of the dependent variables at a preprocessing stage; (3) It leads to a constant inertia matrix in the case of chain like structure; and (4) It automatically captures the deformation of the bodies using distributed inertia and elasticity. The formulations of these three different joint models are compared in order to shed light on the fundamental differences between them. Numerical results of a detailed tracked vehicle model are presented in order to demonstrate the implementation of some of the formulations discussed in this investigation.  相似文献   

12.
By considering the characteristics of deformation of rotationally periodic structures under rotationally periodic loads, the periodic structure is divided into some identical substructures in this study. The degrees-of-freedom (DOFs) of joint nodes between the neighboring substructures are classified as master and slave ones. The stress and strain conditions of the whole structure are obtained by solving the elastic static equations for only one substructure by introducing the displacement constraints between master and slave DOFs. The complex constraint method is used to get the bifurcation buckling load and mode for the whole rotationally periodic structure by solving the eigenvalue problem for only one substructure without introducing any additional approximation. The finite element (FE) formulation of shell element of relative degrees of freedom (SERDF) in the buckling analysis is derived. Different measures of tackling internal degrees of freedom for different kinds of buckling problems and different stages of numerical analysis are presented. Some numerical examples are given to illustrate the high efficiency and validity of this method.  相似文献   

13.
采用四步法计算了考虑循环载荷中压应力影响的正交异性钢桥面板的肋-面板焊缝表面裂纹扩展。第一步是基于正交异性钢桥面板的疲劳分析模型,计算肋-面板焊缝处的应力,第二步是通过肋-面板焊缝的三维局部模型,用Schwartz-Neumann交替法计算焊缝表面裂纹的应力强度因子分布,第三步是用二维断裂力学模型和增量塑性损伤模型,计算循环载荷中的压应力对裂纹扩展的影响,第四步是用第二步中的三维裂纹分析结果和第三步中的二维断裂力学模型得到的裂纹扩展公式,计算钢桥面板的肋-面板焊缝表面裂纹扩展。计算结果表明,对应于正交异性钢桥面板肋-面板焊缝处的循环应力,本文所用模型的裂纹尖端反向塑性区导致裂纹扩展率增加50%以上。研究结果为正交异性钢桥面板肋-面板焊缝裂纹的疲劳寿命分析提供了研究基础。  相似文献   

14.
An analytical method has been developed to predict creep crack initiation (CCI), based on the accumulation of a critical level of damage at a critical distance. The method accounts for the re-distribution of stress from the elastic or elastic–plastic field, experienced on initial loading, to a steady state creep stress distribution, via a transient creep region. The method has been applied to predict CCI times in a fracture specimen of type 316H stainless steel at 550 °C. The failure model has been also been implemented into a finite element (FE) framework. Reasonable and conservative predictions of CCI time can be obtained from the analytical solution relative to FE solutions. Conservative predictions of experimental CCI times are obtained when stress redistribution is taking into account. However, CCI times predicted from a steady state creep model are found to be non-conservative.  相似文献   

15.
螺旋焊缝局部噘嘴问题是复杂的三维问题,至今没有现成的安全评定公式可以利用,也难以获得纯粹的理论解。应“西气东输”工程之需,本文利用现有直焊缝理论基础,建立了该问题的力学模型,获得了应力集中因子的显式解,给制订螺旋焊线管几保缺陷的安全评定标准提供了理论基础。利用商用有限元工具ABAQUS对螺旋焊线局部噘嘴进行的系统分析显示,本文提供的理论解具有很强的预测能力。  相似文献   

16.
本文基于超声疲劳振动技术,设计了三种焊接接头试样(圆形对接焊接试样及其喷丸处理试样和板状十字焊接试样),并利用超声疲劳试验系统测定了其超高周疲劳性能,实验应力比为-1,频率20kHz,实验在室温条件下进行。实验结果表明,圆形对接焊接接头的疲劳性能高于板状十字焊接接头,喷丸处理能提高焊接接头的疲劳强度。将焊接接头的疲劳性能与对应形状的母材进行对比分析,发现焊接接头的疲劳性能远低于母材。在相同疲劳寿命的条件下,圆形焊接接头试件的疲劳强度仅为母材的45%,十字焊接接头试件仅为母材的29%;圆形对接接头在5×106周次以后,试件仍然发生疲劳断裂,而板状十字焊接接头在超高周区域(107~109周次)存在疲劳极限。超声疲劳断口的扫描电子显微镜分析结果显示,圆形焊接接头试件断口位置主要位于熔合区的焊趾处或焊接接头表面几何非连续处,十字接头试件断口位于焊趾处;焊接接头试件裂纹萌生于焊接缺陷、试样表面夹杂或熔合区的不连续处;喷丸处理对焊接接头的裂纹萌生机制没有显著影响。  相似文献   

17.
The ultimate strength of resistance spot welded joints fabricated from a wide range of steel grades, weld button size, and sheet thickness are reported for lap-shear and cross-tension specimens subjected to quasi-static and impact loading conditions. Test data are analyzed with respect to energy, impact speed, and loading rate. Loading rate is identified as a critical, test system independent parameter to reflect the strain rate sensitivity of the steels. An equation is fitted to the ultimate strength test data as a function of loading rate which is proposed to predict the separation of spot welded joint under dynamic loading. The model is validated by test data from open literature generated from other type of specimens and/or dynamic test conditions.  相似文献   

18.
单边裂纹通电瞬间裂尖处应力场的复变函数解   总被引:6,自引:0,他引:6  
本文应用复变函数中的Schwarz-Christoffel变换方法,在具单边裂纹的导电薄板通电瞬间温度场复变函数解的基础上,推导出用复变函数表示的应力场的表达式,并且给出算例,通过理论计算得知;当对具有单边裂纹的导电薄板通入适当密度的电流时,裂尖处温度急剧升高并熔化便裂尖变钝。同时,在裂尖周围形成了有利于遏制裂纹扩展的压应力场,有效地防止了裂纹沿其主方向和其它方向延伸。从理论上证明了电磁热效应在裂尖处产生高温形成焊口的同时,压应力场的形成是遏制裂纹扩展的主要因素之一。理论计算结果与实验结果比较吻合,为这一止裂方法的应用打下了理论基础。  相似文献   

19.
In this paper, a new method for the dynamic analysis of a closed-loop flexible kinematic mechanical system is presented. The kinematic and force models are developed using absolute reference, joint relative, and elastic coordinates as well as joint reaction forces. This recursive formulation leads to a system of loosely coupled equations of motion. In a closed-loop kinematic chain, cuts are made at selected auxiliary joints in order to form spanning tree structures. Compatibility conditions and reaction force relationships at the auxiliary joints are adjoined to the equations of open-loop mechanical systems in order to form closed-loop dynamic equations. Using the sparse matrix structure of these equations and the fact that the joint reaction forces associated with elastic degrees of freedom do not represent independent variables, a method for decoupling the joint and elastic accelerations is developed. Unlike existing recursive formulations, this method does not require inverse or factorization of large non-linear matrices. It leads to small systems of equations whose dimensions are independent of the number of elastic degrees of freedom. The application of dynamic decoupling method in dynamic analysis of closed-loop deformable multibody systems is also discussed in this paper. The use of the numerical algorithm developed in this investigation is illustrated by a closed-loop flexible four-bar mechanism.  相似文献   

20.
欧洲近海结构用钢研究计划的进展   总被引:3,自引:0,他引:3  
欧洲近海结构用钢研究计划在第一阶段(1975—80年)关于海洋焊接结构在疲劳载荷下工作性能的研究基础上,于1981—87年继续进行了第二阶段的研究工作。参加国家有欧洲经济共同体6国及挪威、加拿大等。本文综合报道第二阶段研究情况与主要成果,内容包括:板厚对疲劳强度的影响,焊后改进技术与腐蚀疲劳,疲劳载荷及变幅疲劳试验,疲劳分析的断裂力学方法,某些管节点的应力分析等;并对研究计划的背景及今后研究工作的方向作了介绍。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号