首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An exact analysis of the mechanics of interface failure is presented for a trilayer composite system consisting of geometrically and materially distinct linear elastic layers separated by straight nonlinear, uniform and nonuniform decohesive interfaces. The technical significance of this system stems from its utility in representing two slabs joined together by a third adhesive layer whose thickness cannot be neglected. The formulation, based on exact infinitesimal strain elasticity solutions for rectangular domains, employs a methodology recently developed by the authors to investigate both solitary defect as well as multiple defect interaction problems in layered systems under arbitrary loading. Interfacial integral equations, governing the normal and tangential displacement jump components at the interfaces, are solved for the uniformly loaded trilayer system. Interfacial defects, taken in the form of interface perturbations and nonbonded portions of interface, are modeled by coordinate dependent interface strengths. They are examined in a variety of configurations chosen so as to shed light on the various interfacial failure mechanisms active in layered systems.  相似文献   

2.
3.
Debonding of particle/matrix interfaces can significantly affect the macroscopic behavior of composite material. We have used a nonlinear cohesive law for particle/matrix interfaces to study interface debonding and its effect on particulate composite materials subject to uniaxial tension. The dilute solution shows that, at a fixed particle volume fraction, small particles lead to hardening behavior of the composite while large particles yield softening behavior. Interface debonding of large particles is unstable since the interface opening (and sliding) displacement(s) may have a sudden jump as the applied strain increases, which is called the catastrophic debonding. A simple estimate is given for the critical particle radius that separates the hardening and softening behavior of the composite.  相似文献   

4.
赵玉萍  王世鸣 《应用力学学报》2020,(1):321-329,I0022,I0023
以单纤维十字型横向拉伸试验为研究对象,对纤维/基体界面采用弹性-软化双线性内聚力模型,建立了纤维复合材料在横向拉伸作用下界面法向失效过程的解析模型。得到了沿纤维/基体圆周界面的法向应力分布,纤维/基体界面的状态与界面承载力和单纤维复合材料承载力的关系,以及内聚力参数和试件几何尺寸对它们的影响。结果表明:纤维/基体圆周界面在脱粘前经历全部弹性及弹性+软化两种状态;当界面为弹性状态时,界面法向应力随界面强度线性增加;当界面为弹性+软化状态时,界面软化范围随界面裂纹萌生位移的增加而增大;界面初始脱粘位置与拉伸荷载方向重合;界面初始脱粘时的界面承载力随界面强度及界面裂纹萌生位移的增加而增加,随界面裂纹生成位移的增加而降低;单纤维复合材料的脱粘荷载受基体截面尺寸的影响,当纤维体积含量相同时,沿荷载方向截面尺寸的增大对提高脱粘荷载更显著。  相似文献   

5.
In this paper, the dynamic behavior of two collinear symmetric interface cracks between two dissimilar magneto-electro-elastic material half planes under the harmonic anti-plane shear waves loading is investigated by Schmidt method. By using the Fourier transform, the problem can be solved with a set of triple integral equations in which the unknown variable is the jump of the displacements across the crack surfaces. To solve the triple integral equations, the jump of the displacements across the crack surface is expanded in a series of Jacobi polynomials. Numerical solutions of the stress intensity factor, the electric displacement intensity factor and the magnetic flux intensity factor are given. The relations among the electric filed, the magnetic flux field and the stress field are obtained.  相似文献   

6.
The bond decay at the bar–concrete interface under variable fatigue loads is investigated in this paper. Two kinds of loading paths are considered: low- and high-amplitude cycles. Based on the shear-lag model, the governing equations of the problem are established and solved with reference to three different interfacial degradation models. By the aid of Paris formula, the interfacial debonding rate, the debonded length, and the pull-out force are studied. The effect of the amplitude of the middle applied load and of several material parameters on bond decay is discussed. It is found that the power-degradation model is suitable for short embedment lengths, while both the linear-degradation model and the modified power-degradation model are advantageous in study of bond in long embedment length. It is also found that interfacial friction plays an important role in resisting interfacial debonding, in spite of the effects of Poisson's contraction.  相似文献   

7.
A new experimental technique for accelerated fatigue crack growth tests was recently developed (Du et al., 2001). The technique, which uses piezoelectric actuators, enables application of cyclic loading at frequencies several orders higher than that by mechanical loading. However, the validity of this technique relies on the equivalence between piezoelectric and mechanical loading. In this paper, the behavior of an interfacial crack between a piezoelectric material and an elastic material under in-plane electric loading is studied. The displacement mismatch along a bonded interface due to electric potential loading on the piezoelectric material is modeled by inserting an array of uniformly distributed dislocations along the interface. By means of Fourier transformation methods, the governing equations are converted to an integral equation, which is then converted to a standard Hilbert problem. A closed form solution for stresses, electric field, and electric displacements along the bonded interface is obtained. The results agree very well with those obtained from numerical simulations. The results show that the closed form solution is accurate not only for far field distributions of stresses and electric variables, but also for the asymptotic distributions near the crack tip. The solution also suggests the likelihood of domain switching in the piezoelectric material near the crack tip, a process that may influence the interfacial fracture resistance.  相似文献   

8.
The stress fields of cylindrical and spherical multi-phase inhomogeneity systems with perfect or imperfect interfaces under uniform thermal and far-field mechanical loading conditions are investigated by use of the Boussinesq displacement potentials. The radius of the core inhomogeneity and the thickness of its surrounding coatings are arbitrary. The discontinuities in the tangential and normal components of the displacement at the imperfect interfaces are assumed to be proportional to the associated tractions. In this work, for the problems where the phases of the inhomogeneity system are homogeneous, the exact closed-form thermo-elastic solutions are presented. These solutions along with a systematic numerical methodology are utilized to solve various problems of physical importance, where the constituent phases of the inhomogeneity system may be made of a number of different functionally graded (FG) and homogeneous materials, and each interface may have a perfect or imperfect boundary condition, as desired. Also, the effect of the interfacial sliding and debonding on the stress field and elastic energy of an FG-coated inhomogeneity is examined.  相似文献   

9.
External bonding of FRP plates or sheets has emerged as a popular method for strengthening reinforced concrete. Debonding along the FRP–concrete interface can lead to premature failure of the structure. In this study, a bond-slip model is established to study the interface debonding induced by a flexural crack in a FRP-plated concrete beam. The reinforced concrete beam and FRP plate are modeled as two linearly elastic Euler–Bernoulli beams bonded together through a thin layer of FRP–concrete interface. The interface layer is essentially modeled as a large fracture processing zone of which the stress–deformation relationship is described by a nonlinear bond-slip model. Three different bond-slip models (bi-linear, triangular and linear-damaging) are used. By dividing the debonding process into several stages, governing equations of interfacial shear and normal stresses are obtained. Closed-form solutions are then obtained for the interfacial shear and normal stresses and the deflection of the beam in each stage of debonding. In such a way, the proposed model unifies the whole debonding process, including elastic deformation, debonding initiation and growth, into one model. With such a superior feature, the proposed model provides an efficient and effective analytical tool to study FRP–concrete interface debonding.  相似文献   

10.
IntroductionCompositematerialconsistingofapiezoelectricphaseandapiezomagneticphasehasdrawnsignificantinterestinrecentyears,duetotherapiddevelopmentinadaptivematerialsystems .Itshowsaremarkablylargemagnetoelectriccoefficient,thecouplingcoefficientbetweenst…  相似文献   

11.
 The interfacial momentum and torque balance equations for deforming interfaces between nematic polymers and isotropic viscous fluids are derived and analyzed with respect to shape selection and interfacial nematic ordering. It is found that the interfacial momentum balance equation for nematic interfaces involves bending forces that act normal to the interface, and that interfacial pressure jumps may exist even for planar surfaces. In addition tangential forces on nematic interfaces arise in the presence of surface gradients of the tensor order parameter. The torque balance equation shows that couple stress jumps are balanced by the surface molecular field. The interfacial balance equations are shown to be coupled such that nematic ordering depends on shape and vice versa. The governing dimensionless numbers for deforming nematic polymer interfaces are identified and the limiting regimes are discussed in reference to related experimental data. It is found that the ratio of Frank elasticity to surface anchoring controls whether the surface tensor order parameter deviates from its preferred equilibrium value. Whether the shape is affected, depends on the relative magnitudes of the isotropic surface tension, Frank bulk elasticity, and anchoring energy, and capillary number. Received: 16 April 1999/Accepted: 19 August 1999  相似文献   

12.
FRP-混凝土界面剥离损伤的探测是界面力学分析的一个难点。基于三个标准试件探讨了红外检测方法对FRP-混凝土界面剥离探测的精度、可行性以及剥离判断的标准,并对常幅疲劳荷载下FRP加固钢筋混凝土(RC)梁界面的疲劳行为进行了跟踪记录,分析了界面的疲劳破坏过程。试验结果表明,FRP加固RC梁界面存在初始的未粘结区,在疲劳加载的初期界面剥离快速增加,随后在大部分疲劳寿命期内保持稳定,在最后数千次加载循环内界面损伤失稳发展导致整个加固构件的破坏。文中基于红外数据给出了每个阶段的疲劳加载次数和界面剥离损伤的面积。  相似文献   

13.
The dynamic interaction of two collinear interface cracks between two dissimilar functionally graded piezoelectric/piezomagnetic material strips subjected to the anti-plane shear harmonic stress waves was investigated. By using the Fourier transform, the problem can be solved with the help of a pair of triple integral equations in which the unknown variable is jump of displacement across the crack surfaces. These equations are solved using the Schmidt method. Numerical examples are provided to show the effect of the functionally graded parameter, the circular frequency of the incident waves and the thickness of the strip upon stress, electric displacement and magnetic flux intensity factors of cracks.  相似文献   

14.
15.
黄虎 《力学学报》2003,35(5):606-609
在海洋水域,界面波对大尺度变化流的作用是一种典型的分层流动现象.考虑一不可压缩、无黏的分层势流运动,建立了一个在非平整运动海底上的n层流体演化系统,并对其进行了Hamilton描述.每层流体具有各自的常密度、均匀流水平速度,其厚度由未扰动和扰动部分构成.相对于顶层流体的自由表面,刚性、运动的海底具有一般地形变化特征.在明确指出n层流体运动的控制方程和各层交界面上的运动学、动力学边界条件(包含各层交界面上张力效应)后,对该分层流动力系统进行了Hamilton构造,即给出其正则方程和其下述的正则变量:各交界面位移和各交界面上的动量势密度差。  相似文献   

16.
Summary  The problem of an interface edge crack between two bonded quarter-planes of dissimilar piezoelectric materials is considered under the conditions of anti-plane shear and in-plane electric loading. The crack surfaces are assumed to be impermeable to the electric field. An integral transform technique is employed to reduce the problem under consideration to dual integral equations. By solving the resulting dual integral equations, the intensity factors of the stress and the electric displacement and the energy release rate as well as the crack sliding displacement and the electric voltage across the crack surfaces are obtained in explicit form for the case of concentrated forces and free charges at the crack surfaces and at the boundary. The derived results can be taken as fundamental solutions which can be superposed to model more realistic problems. Received 10 November 2000; accepted for publication 28 March 2001  相似文献   

17.
The current work models a weak(soft) interface between two elastic materials as containing a periodic array of micro-crazes. The boundary conditions on the interfacial micro-crazes are formulated in terms of a system of hypersingular integro-differential equations with unknown functions given by the displacement jumps across opposite faces of the micro-crazes. Once the displacement jumps are obtained by approximately solving the integro-differential equations, the effective stiffness of the micro-crazed interface can be readily computed. The effective stiffness is an important quantity needed for expressing the interfacial conditions in the spring-like macro-model of soft interfaces. Specific case studies are conducted to gain physical insights into how the effective stiffness of the interface may be influenced by the details of the interfacial micro-crazes.  相似文献   

18.
This paper deals with a novel constitutive framework suitable for non-coherent interfaces, such as cracks, undergoing large deformations in a geometrically exact setting. For this type of interface, the displacement field shows a jump across the interface. Within the engineering community, so-called cohesive zone models are frequently applied in order to describe non-coherent interfaces. However, for existing models to comply with the restrictions imposed by (a) thermodynamical consistency (e.g., the second law of thermodynamics), (b) balance equations (in particular, balance of angular momentum) and (c) material frame indifference, these models are essentially fiber models, i.e. models where the traction vector is collinear with the displacement jump. This constraints the ability to model shear and, in addition, anisotropic effects are excluded. A novel, extended constitutive framework which is consistent with the above mentioned fundamental physical principles is elaborated in this paper. In addition to the classical tractions associated with a cohesive zone model, the main idea is to consider additional tractions related to membrane-like forces and out-of-plane shear forces acting within the interface. For zero displacement jump, i.e. coherent interfaces, this framework degenerates to existing formulations presented in the literature. For hyperelasticity, the Helmholtz energy of the proposed novel framework depends on the displacement jump as well as on the tangent vectors of the interface with respect to the current configuration – or equivalently – the Helmholtz energy depends on the displacement jump and the surface deformation gradient. It turns out that by defining the Helmholtz energy in terms of the invariants of these variables, all above-mentioned fundamental physical principles are automatically fulfilled. Extensions of the novel framework necessary for material degradation (damage) and plasticity are also covered.  相似文献   

19.
IntroductionItiswell_knownthatpiezoelectricmaterialsproduceanelectricfieldwhendeformedandundergodeformationwhensubjectedtoanelectricfield .Thecouplingnatureofpiezoelectricmaterialshasattractedwideapplicationsinelectric_mechanicalandelectricdevices,suc…  相似文献   

20.
The scattering problem of anti-plane shear waves in a functionally graded material strip with an off-center crack is investigated by use of Schmidt method. The crack is vertically to the edge of the strip. By using the Fourier transform, the problem can be solved with the help of a pair of dual integral equations that the unknown variable is the jump of the displacement across the crack surfaces. To solve the dual integral equations, the jump of the displacement across the crack surfaces was expanded in a series of Jacobi polynomials. Numerical examples were provided to show the effects of the parameter describing the functionally graded materials, the position of the crack and the frequency of the incident waves upon the stress intensity factors of the crack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号