首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Constitutive equations describing the nonisothermal deformation of elements of a body along paths of small curvature are formulated taking into account the stress mode. The equations include two scalar functions, one relating the first invariants of the tensors and the other relating the second invariants of the stress and strain deviators. Both scalar functions are nonlinear, dependent on temperature and stress mode, and determined in tests on tubular specimens. The plastic incompressibility condition is validated in uniaxial-tension tests on tubular and solid specimens. The proposed equations are used to design a loading process that differs from the base ones and proceeds at high temperature. The calculated results are compared with experimental data  相似文献   

3.
An extension of the Gurson model that incorporates damage development in shear is used to simulate the tension–torsion test fracture data presented in Faleskog and Barsoum (2013) (Part I) for two steels, Weldox 420 and 960. Two parameters characterize damage in the constitutive model: the effective void volume fraction and a shear damage coefficient. For each of the steels, the initial effective void volume fraction is calibrated against data for fracture of notched round tensile bars and the shear damage coefficient is calibrated against fracture in shear. The calibrated constitutive model reproduces the full range of data in the tension–torsion tests thereby providing a convincing demonstration of the effectiveness of the extended Gurson model. The model reinforces the experiments by highlighting that for ductile alloys the effective plastic strain at fracture cannot be based solely on stress triaxiality. For nominally isotropic alloys, a ductile fracture criterion is proposed for engineering purposes that depends on stress triaxiality and a second stress invariant that discriminates between axisymmetric stressing and shear dominated stressing.  相似文献   

4.
一个综合模糊裂纹和损伤的混凝土应变软化本构模型   总被引:5,自引:0,他引:5  
本文研究就变软化材料的本构关系,提出了一个考虑损伤的粘塑性模型,损伤不仅影响材料的临界应力,而且影响材料的粘塑性,为模拟材料的应变软化行为,假设受损混凝土的破坏局部区域由模糊裂纹和损伤所统治,软化模量和局部区域尺度参量依赖于模糊裂纹扩展时释放的断裂能的参变量,用文中提出的模型计算了混凝土单轴压缩时不同应变速率下的瞬时应力应变响应以及等应力长期作用下的徐变,均得到很的结果。  相似文献   

5.
The response of a polymer (polytetrafluoroethylene) to quasi-static and dynamic loading is determined and modeled. The polytetrafluoroethylene is extremely ductile and highly nonlinear in elastic as well as plastic behaviors including elastic unloading. Constitutive model developed earlier by Khan, Huang and Liang (KHL) is extended to include the responses of polymeric materials. The strain rate hardening, creep, and relaxation behaviors of polytetrafluoroethylene were determined through extensive experimental study. Based on the observation that both viscoelastic and viscoplastic deformation of polytetrafluoroethylene are time dependent and nonlinear, a phenomenalogical viscoelasto–plastic constitutive model is presented by a series connection of a viscoelastic deformation module (represented by three elements standard solid spring dashpot model), and a viscoplastic deformation module represented by KHL model. The KHL module is affected only when the stress exceeds the initial yield stress. The comparison between the predictions from the extended model and experimental data for uniaxial static and dynamic compression, creep and relaxation demonstrate that the proposed constitutive model is able to represent the observed time dependent mechanical behavior of polytetrafluoroethylene polytetrafluoroethylene qualitatively and quantitatively.  相似文献   

6.
A damage plasticity model for ductile fracture is proposed. This model is established on the cylindrical coordinate system of principal stress space. Experimental results show that fracture initiation in uncracked ductile solids is sensitive to the hydrostatic pressure and dependent on the Lode angle. The joint effects of pressure and Lode angle define a fracture envelope in principal stress space. Plastic deformation induced damage is calculated by an integral of the damage rate measured at current loading and deformation status with respect to the fracture envelope. A power law damage rule is proposed to characterize the nonlinearity in damage accumulation. A damage-related weakening factor is adopted to describe the material deterioration. The material parameters are calibrated from standard laboratory tests. The proposed model is numerically implemented. Four simulations with emphasis on crack path prediction are presented.  相似文献   

7.
本文针对9种金属材料完成了具有不同约束程度的10类试样的延性断裂试验, 获得了发生拉、压、扭和裂尖断裂等破坏形式构型试样的载荷-位移试验关系; 基于圆棒漏斗试样拉伸试验所得直至破坏的载荷-位移曲线, 采用有限元辅助试验(finite-element-analysis aided testing, FAT)方法得到了9种材料直至破坏的全程等效应力-应变曲线, 以此作为材料本构关系通过有限元分析获得了各类试样直至临界破坏的载荷-位移关系模拟. 载荷-位移关系模拟结果与试验结果有较好的一致性, 表明用于解决试样颈缩问题的FAT方法所获得的全程材料本构关系针对各向同性材料具有真实性和普适性. 对应9种材料、10类试样的36 个载荷-位移临界断裂点, 通过有限元分析获得了对应的材料临界断裂应力、应变与临界应力三轴度, 研究表明, 第一主应力在延性变形过程中为主控断裂的主导参量; 通过研究光滑、缺口、裂纹等构型试样的断裂状态, 提出了$-1$至3范围的应力三轴度下由第一主应力主控的统一塑性临界断裂准则.   相似文献   

8.
The purpose of this work is to simulate the evolution of ductile damage and failure involved by plastic strain reversals using damage models based on either continuum damage mechanics (CDM) or porosity evolution. A low alloy steel for pressure vessels (20MnMoNi55) was chosen as reference material. The work includes both experimental and simulation phases. The experimental campaign involves different kinds of specimens and testing conditions. First, monotonic tensile tests have been performed in order to evaluate tensile and ductile damage behaviour. Then, the cyclic yielding behaviour has been characterized performing cyclic plasticity tests on cylindrical bars. Finally, cyclic loading tests in the plastic regime have been made on different round notched bars (RNBs) to study the evolution of plastic deformation and damage under multiaxial stress conditions. The predictions of the different models were compared in terms of both, the specimens macroscopic response and local damage. Special emphasis was laid on predictions of the number of cycles prior to final failure and the crack initiation loci.  相似文献   

9.
张毅  薛世峰  韩丽美  周博  刘建林  贾朋 《力学学报》2021,53(6):1671-1683
损伤本构模型对研究材料的断裂失效行为有重要意义, 但聚合物材料损伤演化的定量表征实验研究相对匮乏. 通过4种高密度聚乙烯(high density polythylene, HDPE)缺口圆棒试样的单轴拉伸实验获得了各类试样的载荷-位移曲线和真应力-应变曲线, 采用实验和有限元模拟相结合的方法确定了HDPE材料不同应力状态下的本构关系, 并建立了缺口半径与应力三轴度之间的关系;采用两阶段实验法定量描述了4种HDPE试样单轴拉伸过程中的弹性模量变化, 并建立了基于弹性模量衰减的损伤演化方程, 结合中断实验和扫描电子显微镜分析了应力状态对HDPE材料微观结构演化的影响. 结果表明缺口半径越小, 应力三轴度越大, 损伤起始越早、演化越快; 微观表现为: 高应力三轴度促进孔洞的萌生和发展, 但抑制纤维状结构的产生;基于实验和有限元模拟获得的断裂应变、应力三轴度、损伤演化方程等信息提出了一种适用于聚合物的损伤模型参数确定方法, 最后将本文获得的本构关系和损伤模型用于HDPE平板的冲压成形模拟, 模拟结果与实验结果吻合良好.   相似文献   

10.
The aim of this paper is to incorporate plastic anisotropy into constitutive equations of porous ductile metals. It is shown that plastic anisotropy of the matrix surrounding the voids in a ductile material could have an influence on both effective stress–strain relation and damage evolution. Two theoretical frameworks are envisageable to study the influence of plastic flow anisotropy: continuum thermodynamics and micromechanics. By going through the Rousselier thermodynamical formulation, one can account for the overall plastic anisotropy, in a very simple manner. However, since this model is based on a weak coupling between plasticity and damage dissipative processes, it does not predict any influence of plastic anisotropy on cavity growth, unless a more suitable choice of the thermodynamical force associated with the damage parameter is made. Micromechanically-based models are then proposed. They consist of extending the famous Gurson model for spherical and cylindrical voids to the case of an orthotropic material. We derive an upper bound of the yield surface of a hollow sphere, or a hollow cylinder, made of a perfectly plastic matrix obeying the Hill criterion. The main findings are related to the so-called ‘scalar effect’ and ‘directional effect’. First, the effect of plastic flow anisotropy on the spherical term of the plastic potential is quantified. This allows a classification of sheet materials with regard to the anisotropy factor h; this is the scalar effect. A second feature of the model is the plasticity-induced damage anisotropy. This results in directionality of fracture properties (‘directional effect’). The latter is mainly due to the principal Hill coefficients whilst the scalar effect is enhanced by ‘shear’ Hill coefficients. Results are compared to some micromechanical calculations using the finite element method.  相似文献   

11.
Nonlinear dynamic finite element analysis (FEA) is conducted to simulate the fracture of unnotched Charpy specimens of steel under pendulum impact loading by a dedicated, oversized and nonstandard Bulk Fracture Charpy Machine (BFCM). The impact energy needed to fracture an unnotched Charpy specimen in a BFCM test can be two orders of magnitude higher than the typical impact energy of a Charpy V-notch specimen. To predict material failure, a phenomenological, stress triaxiality dependent fracture initiation criterion and a fracture evolution law in the form of strain softening are incorporated in the constitutive relations. The BFCM impact energy results obtained from the FEA simulations compare favorably with the corresponding experimental data. In particular, the FEA predicts accurately the correlations of the BFCM impact energy with such factors as specimen geometry, impactor tup width and material type. The analyses show that a specimen’s progressive deterioration through the thickness dimension displays a range of shear to ductile fracture modes, demonstrating the necessity of applying a stress state dependent fracture initiation criterion. Modeling the strain softening behavior helps to capture the residual load carrying capability of a ductile metal or alloy beyond the onset of damage. The total impact energy can be significantly under predicted if a softening branch is not included in the stress-strain curve. This research supports a study of the puncture failure of railroad tank cars under dynamic impact loading. Applications of the presented fracture model in failure analyses of other structures are further discussed.  相似文献   

12.
A set of constitutive equations for large rate-dependent elastic-plastic-damage materials at elevated temperatures is presented to be able to analyze adiabatic high strain rate deformation processes for a wide range of stress triaxialities. The model is based on the concepts of continuum damage mechanics. Since the material macroscopic thermo-mechanical response under large strain and high strain rate deformation loading is governed by different physical mechanisms, a multi-dissipative approach is proposed. It incorporates thermo-mechanical coupling effects as well as internal dissipative mechanisms through rate-dependent constitutive relations with a set of internal variables. In addition, the effect of stress triaxiality on the onset and evolution of plastic flow, damage and failure is discussed.Furthermore, the algorithm for numerical integration of the coupled constitutive rate equations is presented. It relies on operator split methodology resulting in an inelastic predictor-elastic corrector technique. The explicit finite element program LS-DYNA augmented by an user-defined material subroutine is used to approximate boundary-value problems under dynamic loading conditions. Numerical simulations of dynamic experiments with different specimens are performed and good correlation of numerical results and published experimental data is achieved. Based on numerical studies modified specimens geometries are proposed to be able to detect complex damage and failure mechanisms in Hopkinson-Bar experiments.  相似文献   

13.
A viscoplastic model accounting for developing damage in concrete is proposed by assuming the rate of damage to be dependent on viscous strain and stress rates. The damage is measured by a scalar parameter affecting both the yield stress and the material viscosity. For a post-critical range of deformation, the localized mode occurs for which additional constitutive equations are specified. The model is applied to simulate uniaxial strain rate controlled and creep response for the concrete.  相似文献   

14.
Local mechanical properties in aluminum cast components are inhomogeneous as a consequence of spatial distribution of microstructure,e.g.,porosity,inclusions,grain size and arm spacing of secondary dendrites.In this work,the effect of porosity is investigated.Cast components contain voids with different sizes,forms,orientations and distributions.This is approximated by a porosity distribution in the following.The aim of this paper is to investigate the influence of initial porosity,stress triaxiality and Lode parameter on plastic deformation and ductile fracture.A micromechanical model with a spherical void located at the center of the matrix material,called the representative volume element(RVE),is developed.Fully periodic boundary conditions are applied to the RVE and the values of stress triaxiality and Lode parameter are kept constant during the entire course of loading.For this purpose,a multi-point constraint(MPC)user subroutine is developed to prescribe the loading.The results of the RVE model are used to establish the constitutive equations and to further investigate the influences of initial porosity,stress triaxiality and Lode parameter on elastic constant,plastic deformation and ductile fracture of an aluminum die casting alloy.  相似文献   

15.
16.
It is recognized experimentally that differences in plastic flow stress due to the change in strain rate of SUS304 stainless steel are found to decrease after cyclic preloadings, but minimal change is observed in relaxation properties. Therefore, viscosity function based on tensile stress–strain properties differs from that obtained from relaxation behavior. For such case, the existing visco-plastic constitutive concept, such as the so-called overstress model where only viscosity is taken into consideration, has a poor capability in predicting the time-dependent mechanical properties systematically. A new viscoplastic constitutive concept is presented to analyze the phenomenon. In the constitutive concept, the dynamic strain aging even at room temperature, as well as viscosity, are introduced as the dominant factors of the time-dependent plastic deformation. An experimental technique is proposed and some experimental results are presented to estimate the effects of aging and viscosity separately on the time-dependency of a SCM435 low alloyed steel under tensile loading. The proposed constitutive model with aging is verified for the systematical predictions of both plastic flow properties and relaxation behavior of the SCM435 low alloyed steel.  相似文献   

17.
Proposed is a parameter defined to characterize the onset of macrocrack initiation in notched steel bars and cracked three-point bend specimens. It accounts for stress triaxiality and damage by plasticity reflected via the effective plastic strain. Results are obtained for notched round bars made of 20#, A3, DE36I and DE36II steel by assuming that the stress triaxiality increases with increasing effective plastic strain; they are compared with the results by letting the stress triaxiality to be constant. Use are made of experimental data on the necking of tensile bars. The parameter corresponding to the onset of ductile fracture were found to be nearly constant. Since the local effective plastic stress can be related to the crack tip opening (COD) distance, the same procedure can be applied to evaluate fracture initiation in three-point bend specimens with an edge crack. It is found that the COD in AS1204-350 and AS1405-180 structural steels decreased with increasing stress triaxiality.  相似文献   

18.
In this paper a constitutive model for rigid-plastic hardening materials based on the Hencky logarithmic strain tensor and its corotational rates is introduced. The distortional hardening is incorporated in the model using a distortional yield function. The flow rule of this model relates the corotational rate of the logarithmic strain to the difference of the Cauchy stress and the back stress tensors employing deformation-induced anisotropy tensor. Based on the Armstrong–Fredrick evolution equation the kinematic hardening constitutive equation of the proposed model expresses the corotational rate of the back stress tensor in terms of the same corotational rate of the logarithmic strain. Using logarithmic, Green–Naghdi and Jaumann corotational rates in the proposed constitutive model, the Cauchy and back stress tensors as well as subsequent yield surfaces are determined for rigid-plastic kinematic, isotropic and distortional hardening materials in the simple shear deformation. The ability of the model to properly represent the sign and magnitude of the normal stress in the simple shear deformation as well as the flattening of yield surface at the loading point and its orientation towards the loading direction are investigated. It is shown that among the different cases of using corotational rates and plastic deformation parameters in the constitutive equations, the results of the model based on the logarithmic rate and accumulated logarithmic strain are in good agreement with anticipated response of the simple shear deformation.  相似文献   

19.
The present paper is concerned with the numerical modelling of the large elastic–plastic deformation behavior and localization prediction of ductile metals which are sensitive to hydrostatic stress and anisotropically damaged. The model is based on a generalized macroscopic theory within the framework of nonlinear continuum damage mechanics. The formulation relies on a multiplicative decomposition of the metric transformation tensor into elastic and damaged-plastic parts. Furthermore, undamaged configurations are introduced which are related to the damaged configurations via associated metric transformations which allow for the interpretation as damage tensors. Strain rates are shown to be additively decomposed into elastic, plastic and damage strain rate tensors. Moreover, based on the standard dissipative material approach the constitutive framework is completed by different stress tensors, a yield criterion and a separate damage condition as well as corresponding potential functions. The evolution laws for plastic and damage strain rates are discussed in some detail. Estimates of the stress and strain histories are obtained via an explicit integration procedure which employs an inelastic (damage-plastic) predictor followed by an elastic corrector step. Numerical simulations of the elastic–plastic deformation behavior of damaged solids demonstrate the efficiency of the formulation. A variety of large strain elastic–plastic-damage problems including severe localization is presented, and the influence of different model parameters on the deformation and localization prediction of ductile metals is discussed.  相似文献   

20.
A combined physico-mechanical approach to research and modeling of forming processes for metals with predictable properties is developed. The constitutive equations describing large plastic deformations under complex loading are based on both plastic flow theory and continuum damage mechanics. The model which is developed in order to study strongly plastically deformed materials represents their mechanical behavior by taking micro-structural damage induced by strain micro-defects into account. The symmetric second-rank order tensor of damage is applied for the estimation of the material damage connected with volume, shape, and orientation of micro-defects. The definition offered for this tensor is physically motivated since its hydrostatic and deviatoric parts describe the evolution of damage connected with a change in volume and shape of micro-defects, respectively. Such a representation of damage kinetics allows us to use two integral measures for the calculation of damage in deformed materials. The first measure determines plastic dilatation related to an increase in void volume. A critical amount of plastic dilatation enables a quantitative assessment of the risk of fracture of the deformed metal. By means of an experimental analysis we can determine the function of plastic dilatation which depends on the strain accumulated by material particles under various stress and temperature-rate conditions of forming. The second measure accounts for the deviatoric strain of voids which is connected with a change in their shape. The critical deformation of ellipsoidal voids corresponds to their intense coalescence and to formation of large cavernous defects. These two damage measures are important for the prediction of the meso-structure quality of metalware produced by metal forming techniques. Experimental results of various previous investigations are used during modeling of the damage process.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号