首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 745 毫秒
1.
Equations of stationary long waves on the interface between a homogeneous fluid and an exponentially stratified fluid are considered. An equation of the second-order approximation of the shallow water theory inheriting the dispersion properties of the full Euler equations is used as the basic model. A family of asymptotic submodels is constructed, which describe three different types of bifurcation of solitary waves at the boundary points of the continuous spectrum of the linearized problem. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 4, pp. 151–161, July–August, 2008.  相似文献   

2.
The pattern of disturbances arising during the motion of a strip along a horizontal surface in a continuously stratified fluid with identified upstream and attached internal waves, boundary layers, and edge singularities is calculated in the liner approximation. The flow pattern behind a flat plate moving with a constant velocity in a continuously stratified fluid is studied with the use of the optical schlieren technique; transformation of waves and finely structured elements of the flow with increasing plate velocity is analyzed. The calculated and experimentally observed patterns of internal waves at low velocities are demonstrated to be in good agreement. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 6, pp. 77–91, November–December, 2007.  相似文献   

3.
Previous experiments that have examined the generation of internal gravity waves by a monochromatic source have been restricted to small amplitude forcing in Boussinesq stratified fluids. Here we present measurements of internal waves generated by a circular cylinder oscillating at large amplitude in a non-Boussinesq fluid. The ‘synthetic schlieren’ optical measurement technique (Sutherland et al. in J Fluid Mech 390:93–126, 1999) is extended to stratifications in which the index of refraction of the fluid may vary nonlinearly with density. The method is applied to examine disturbances in approximately uniformly stratified ambient fluids consisting either of sodium chloride (NaCl) or sodium iodide (NaI) solutions whose concentrations increase to near-saturation at the bottom of the tank. In particular, we report upon the first extensive measurements of the optical properties of NaI solutions as they depend upon concentration and density. Applying the results to experiments, we find that large amplitude forcing generates a patch of oscillatory turbulence surrounding the cylinder, thereby increasing the effective cylinder size and decreasing the amplitude of the waves in comparison with the predictions of linear theory. We parameterize the influence of the turbulent boundary layer in terms of an effective cylinder radius and forcing amplitude.  相似文献   

4.
A solution of an initial-boundary-value problem for a system of integrodifferential equations which describes the plane waves excited in an initially stationary heavy two-layer ideal fluid by a cylinder moving at an angle to the horizontal is investigated. The homogeneous fluid fractions of different densities are assumed to be separated by an evolving fluid interface (horizontal plane, if the liquid is at rest). An approximate solution of two problems for the waves excited by a cylinder moving with a constant acceleration and an oscillating cylinder is constructed analytically. Nizhnii Novgorod. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 137–152, July–August, 1998.  相似文献   

5.
6.
When a source of variable intensity moves in a stratified fluid, several types of waves, possibly including waves that outstrip the source (precursor waves), are generated. By analyzing the expressions for the mean energy losses due to internal wave radiation per unit time it is shown that in fluids with convex wave dispersion curves up to four types of waves per mode are possible. One of these types, which vanishes under supercritical conditions, is related to the precursor waves. The angle dependence of these waves and their conditions of excitation with respect to source velocity are established. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.2, pp. 97–103, March–April, 1994.  相似文献   

7.
8.
黄虎 《力学学报》2003,35(5):606-609
在海洋水域,界面波对大尺度变化流的作用是一种典型的分层流动现象.考虑一不可压缩、无黏的分层势流运动,建立了一个在非平整运动海底上的n层流体演化系统,并对其进行了Hamilton描述.每层流体具有各自的常密度、均匀流水平速度,其厚度由未扰动和扰动部分构成.相对于顶层流体的自由表面,刚性、运动的海底具有一般地形变化特征.在明确指出n层流体运动的控制方程和各层交界面上的运动学、动力学边界条件(包含各层交界面上张力效应)后,对该分层流动力系统进行了Hamilton构造,即给出其正则方程和其下述的正则变量:各交界面位移和各交界面上的动量势密度差。  相似文献   

9.
The conditions of generation of a geostrophic flow by a pressure zone applied to the free surface of an undisturbed continuously stratified fluid layer of constant depth are determined in the general linear formulation. At large times the spatial external pressure distribution is assumed to tend to the steady state. In the axisymmetric case the geostrophic vortex is qualitatively analyzed on the basis of a numerical calculation of integral representations of the hydrodynamic fields for a fluid with an exponential density stratification. Sevastopol. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 51–59, January–February, 1999.  相似文献   

10.
The vibrations of a vessel strongly influence the behavior of the interface of the fluids in it. Thus, vertical vibrations can lead both to the parametric excitation of waves (Faraday ripples) and to the suppression of the Rayleigh-Taylor instability [1–2]. At the present time, the influence of vertical vibrations on the behavior of a fluid surface have been studied in sufficient detail (see, for example, review [3]). The behavior of an interface of fluids in the case of horizontal vibrations has been studied less. An interesting phenomenon has been revealed in the experimental papers [4, 5]: in the case of fairly strong horizontal vibrations of a vessel containing a fluid with a free surface, the fluid collects near one of the vertical vessel walls, the free surface being practically plane and stationary with respect to the vessel, while its angle of inclination to the horizon depends on the vibration rate. But if there is a system of immiscible fluids with comparable but different densities in the vessel, horizontal vibrations lead to the formation of a steady wave relief at the interface. An explanation of the behavior of a fluid with a free boundary was given in [6] on the basis of averaged equations of fluid motion in a vibrational field. The present paper is devoted to an analysis of the behavior of the interface of fluids with comparable densities in a high-frequency vibrational field. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 8–13, November–December, 1986.  相似文献   

11.
The problem of steady-state internal waves in a weakly stratified two-layer fluid with a density that is constant in the lower layer and depends exponentially on the depth in the upper layer is considered. The spectral properties of the equations of small perturbations of a homogeneous piecewise-constant flow are described. A nonlinear ordinary differential equation describing solitary waves and smooth bores on the layer interface is obtained using the Boussinesq expansion in a small parameter.  相似文献   

12.
A three-dimensional nonstationary problem of vibrations of a flexible shell moving on the surface of an ideal heavy fluid. The forces due to surface tension are ignored. The problem is formulated in the space of the acceleration potential. The potential of the pulsating source is found by solving the Euler equation and the continuity equation taking into account the free-surface conditions (linear theory of small waves) and the conditions at infinity. The density distribution function of the dipole layer is determined from the boundary conditions on the surface of the shell. Formulas for determining the shape of gravity waves on the fluid surface and the natural frequencies of vibrations of the shell are obtained. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 4, pp. 66–75, July–August, 2009.  相似文献   

13.
二层流体中波动问题的Hamilton正则方程   总被引:1,自引:0,他引:1  
马晨明  乐嘉春 《力学季刊》2001,22(3):374-377
研究了两种常密度不可压缩理想流体组成的垂直分层的二流体系统的无旋等熵流动,考虑了上层流体与空气及两层流体间的表面张力。流动区域在水平方向无限伸展,上层流体有限深度,下层流体无限深。利用自由面及分界面相对于静止时平衡位置的偏移以及两层流体的速度势构造了Hamilton函数。为导出Hamilton正则方程引用了Euler描述下的流体运动的变分原理。自由面的位移是Hamilton意义下的正则变量,其对偶变量是上层流体在自由面上取值的速度势与密度的乘积。另一个正则变量是分界面的位移,其对偶变量是下层流体的密度与下层流体速度势在分界面上所取值的乘积减去上层流体密度与上层流体速度势在分界面上所取值的相应乘积。导出的Hamilton结构对分析分层流动中表面波与内波的相互作用是重要的。  相似文献   

14.
The stability of the interface between two immiscible fluids of different density which occupy a plane horizontal layer performing harmonic horizontal oscillations is considered. Within the framework of the ideal fluid model a transformation reducing the problem of small plane perturbations to the Mathieu equation is found. Resonance instability domains associated with the formation of capillary-gravitational waves are investigated. A model which takes into account dissipation processes due to the presence of viscous friction is constructed. The role of the viscous dissipation in suppressing resonance instability is discussed. Perm’. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 25–31, May–June, 1998. The work was carried out with partial support from the Russian Foundation for Basic Research (project No. 95-01-00386).  相似文献   

15.
The field of internal gravity waves in a layer of an arbitrary stratified fluid is studied for critical generation modes and in the vicinity of trajectories of motion of the perturbation sources. The exact solutions describing the structure of a separate mode of the wave field in the vicinity of the perturbation source in the critical generation modes are investigated, and expressions for the total field representing the sum of all wave modes are obtained. In the vicinity of the trajectories of the perturbation sources, asymptotic representations of the eigenfunctions and eigenvalues of the basic vertical spectral problem of internal waves are constructed in the approximation of large wave numbers and asymptotic expressions for a separate mode of the wave field are obtained that describe the spatial structure and features of the fields of internal gravity waves. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 5, pp. 70–79, September–October, 2008.  相似文献   

16.
A novel hydrodynamic effect, namely, slow contactless motion of a heavy spherical particle along an inclined wall, accompanied by the formation of a finite particle–wall clearance under the action of a cavitation-induced lift force, is investigated. Similarity parameters controlling the particle motion, determined using the dimensionality theory, are validated experimentally. These parameters are related to the atmospheric pressure, the surface tension on the liquid–air interface, the density of the air dissolved in the fluid, the particle weight in the fluid, and the viscoelastic properties of the fluid.This paper was presented at the AERC 2005.  相似文献   

17.
It is proposed to consider the propagation of surface waves along a tangential magnetohydrodynamic discontinuity in the particular case where the fluid velocities on both sides of the interface are equal to zero. In [1] it was shown that waves called surface Alfvén waves may be propagated along the surface separating a semi-infinite region without a field from a region with a uniform magnetic field. The linear theory of surface Alfvén waves in a compressible medium was considered in [2]. In [3] the damping of surface Alfvén waves as a result of viscosity and heat conduction was investigated. The propagation of low-amplitude nonlinear surface Alfvén waves in an incompressible fluid in the absence of dissipative processes is described by the integrodifferential equation obtained in [4]. By means of a numerical solution of this equation it was shown that a perturbation initially in the form of a sinusoidal wave will break. The breaking time was determined. In this paper the equation derived in [4] is extended to the case of a viscous fluid. It is shown that the equation obtained does not have steady-state solutions. The propagation of periodic disturbances is investigated numerically. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 94–104, November–December, 1986. The author wishes to thank L. S. Fedorov for assisting with the calculations.  相似文献   

18.
A method of solving the problem of the motion of an elliptic contour in a three-layer fluid is developed within the framework of the linear theory. The results of calculating the hydrodynamic contour loads and the shape of the interfaces are presented for the following problems: the motion of a contour beneath an interface between two media and in a two-layer fluid both beneath a rigid lid and a free surface. On the basis of the numerical experiment it is concluded that surface and internal waves have a significant effect on the hydrodynamic characteristics of the contour. Omsk. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 121–127, May–June, 1998. The work was carried out with financial support from the Russian Foundation for Basic Research (project No. 96-01-00093).  相似文献   

19.
The dynamics of internal waves of small but finite amplitude in a two-layer fluid system bounded by rigid horizontal surfaces at bottom and top is investigated theoretically. For linear disturbances of the fluid interface the authors propose a polynomial approximation of the dispersion relation which has the same asymptotics as the exact formula in the limiting situations of very long and short waves. In the case of three-dimensional, weakly nonlinear disturbances of slowly varying shape (in the coordinate system moving with the wave) an equation like the wave equation is derived. This equation has Stokes solutions coinciding with the well-known results for infinitely deep layers. For fairly long disturbances solitary solutions of the model wave equation which fit the experimental data are determined. Novosibirsk. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.1, pp. 125–131, January–February, 1994.  相似文献   

20.
Under investigation in this paper, with symbolic computation, is a forced variable-coefficient extended Korteweg–de Vries equation, which can describe the weakly-nonlinear long internal solitary waves (ISWs) in the fluid with the continuous stratification on density. By virtue of the Hirota bilinear method, multi-soliton solutions for such an equation with the external force term have been derived. Furthermore, effects are discussed with the aid of the characteristic line: (I) Inhomogeneities of media and nonuniformities of boundaries, depicted by the variable coefficients, play a role in the soliton behavior; (II) Solitons change their initial propagation direction on the compact shock or anti-shock wave background in the presence of the external time-dependent force, and the results present an extended view compared with that for the linear theory; (III) Combined effects of the inhomogeneities and external force are regarded as the nonlinear composition of the independent influence induced by the two factors. Those results could be expected to be helpful for the investigation on the dynamics of the ISWs in an ocean or atmosphere stratified fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号