首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
壁湍流相干结构和减阻控制机理   总被引:2,自引:0,他引:2  
许春晓 《力学进展》2015,45(1):201504
剪切湍流中相干结构的发现是上世纪湍流研究的重大进展之一,这些大尺度的相干运动在湍流的动力学过程中起重要作用,也为湍流的控制指出了新的方向.壁湍流高摩擦阻力的产生与近壁区流动结构密切相关,基于近壁区湍流动力学过程的减阻控制方案可以有效降低湍流的摩擦阻力,但是随着雷诺数的升高, 这些控制方案的有效性逐渐降低.近年来研究发现, 在高雷诺数情况下外区存在大尺度的相干运动,这种大尺度运动对近壁区湍流和壁面摩擦阻力的产生有重要影响,为高雷诺数湍流减阻控制策略的设计提出了新的挑战.该文将对壁湍流相干结构的研究历史加以简单的回顾,重点介绍近壁区相干结构及其控制机理、近年来高雷诺数外区大尺度运动的研究进展,在此基础上提出高雷诺数减阻控制研究的关键科学问题.   相似文献   

2.
雷诺切应力是壁湍流高摩擦阻力的重要来源, 有理论认为可以通过壁面生成负雷诺应力(数值上为正)的方式来削弱湍流流场中雷诺应力的分布, 以此获得流动减阻. 而通过对雷诺平均运动方程的法向二次积分, 可以发现壁面生成正雷诺应力(数值上为负)对壁面摩擦阻力系数才有负贡献. 文中在湍流边界层流动的控制区域下边界设置一系列倾斜狭缝, 利用该装置通过周期性吹吸的方法产生壁面生成正(负)雷诺应力, 并采用直接数值模拟方法考察和验证上文提到的减阻理论. 文中采用的湍流边界层流动模型, 其流动雷诺数(基于外流速度及动量损失厚度)从300 发展到860. 文中通过多组数值模拟算例, 考察了射流强度和频率对壁面摩擦阻力系数的影响, 并对比了壁面生成正或负雷诺应力对流动的影响. 研究表明, 壁面生成正雷诺应力控制的减阻率能达到3.26, 而壁面生成负雷诺应力控制的减阻效果较壁面生成正雷诺应力控制的要差; 壁面生成的正雷诺应力对壁面摩擦阻力有负贡献, 而壁面生成的负雷诺应力对壁面摩擦阻力有正贡献; 通过考察控制的收支比, 发现控制方案不能获得能量净收益.   相似文献   

3.
Skin friction drag is much greater in turbulent flows as compared with that in laminar flows. It is well known that traveling wave control can be used to achieve a large drag reduction. In the present study, a direct numerical simulation of a turbulent pipe flow was performed to clarify the mechanism of the drag reduction caused by the traveling wave control. The flow induced by the control was evaluated using pathline analysis. Near the wall, a “closed flow” was formed, wherein the injected particles return to the wall owing to the suction flow. The random component of Reynolds shear stress was perfectly suppressed in the closed flow, which suggests that there was no turbulence. The controlled flow was categorized into four patterns, and each flow characteristic and drag reduction effect was discussed. When the closing rate is high, the drag decreases, while when the closing rate is low, i.e., when the injected particles are released into the main flow, the turbulence is maintained. If the thickness of the layer suppressing turbulence is insufficient, a significant effect in terms of the drag reduction cannot be expected. The large drag reduction owing to the traveling wave control can be attributed to the elimination of turbulence in the region near the wall.  相似文献   

4.
Direct numerical simulation (DNS) of turbulent channel flow over a two-dimensional irregular rough wall with uniform blowing (UB) was performed. The main objective is to investigate the drag reduction effectiveness of UB on a rough-wall turbulent boundary layer toward its practical application. The DNS was performed under a constant flow rate at the bulk Reynolds number values of 5600 and 14000, which correspond to the friction Reynolds numbers of about 180 and 400 in the smooth-wall case, respectively. Based upon the decomposition of drag into the friction and pressure contributions, the present flow is considered to belong to the transitionally-rough regime. Unlike recent experimental results, it turns out that the drag reduction effect of UB on the present two-dimensional rough wall is similar to that for a smooth wall. The friction drag is reduced similarly to the smooth-wall case by the displacement of the mean velocity profile. Besides, the pressure drag, which does not exist in the smooth-wall case, is also reduced; namely, UB makes the rough wall aerodynamically smoother. Examination of turbulence statistics suggests that the effects of roughness and UB are relatively independent to each other in the outer layer, which suggests that Stevenson’s formula can be modified so as to account for the roughness effect by simply adding the roughness function term.  相似文献   

5.
The dynamic and thermal performance of particle-laden turbulent flow is investigated via direction numerical simulation combined with the Lagrangian point-particle tracking under the condition of two-way coupling, with a focus on the contributions of particle feedback effect to momentum and heat transfer of turbulence. We take into account the effects of particles on flow drag and Nusselt number and explore the possibility of drag reduction in con-junction with heat transfer enhancement in particle-laden turbulent flows.The effects of particles on momentum and heat transfer are analyzed,and the possibility of drag reduc-tion in conjunction with heat transfer enhancement for the prototypical case of particle-laden turbulent channel flows is addressed.We present results of turbulence modification and heat transfer in turbulent particle-laden channel flow,which shows the heat transfer reduction when large inertial parti-cles with low specific heat capacity are added to the flow. However,we also found an enhancement of the heat transfer and a small reduction of the flow drag when particles with high specific heat capacity are involved.The present results show that particles,which are active agents,interact not only with the velocity field,but also the temperature field and can cause a dissimilarity in momentum and heat transport.This demonstrates that the possibility to increase heat transfer and suppress friction drag can be achieved with addition of par-ticles with different thermal properties.  相似文献   

6.
Prediction of the characteristics of turbulent flows with strong streamline curvature, such as flows in turbomachines, curved channel flows, flows around airfoils and buildings, is of great importance in engineering applications and poses a very practical challenge for turbulence modeling. In this paper, we analyze qualitatively the curvature effects on the structure of turbulence and conduct numerical simulations of a turbulent Uduct flow with a number of turbulence models in order to assess their overall performance. The models evaluated in this work are some typical linear eddy viscosity turbulence models, nonlinear eddy viscosity turbulence models (NLEVM) (quadratic and cubic), a quadratic explicit algebraic stress model (EASM) and a Reynolds stress model (RSM) developed based on the second-moment closure. Our numerical results show that a cubic NLEVM that performs considerably well in other benchmark turbulent flows, such as the Craft, Launder and Suga model and the Huang and Ma model, is able to capture the major features of the highly curved turbulent U-duct flow, including the damping of turbulence near the convex wall, the enhancement of turbulence near the concave wall, and the subsequent turbulent flow separation. The predictions of the cubic models are quite close to that of the RSM, in relatively good agreement with the experimental data, which suggests that these models may be employed to simulate the turbulent curved flows in engineering applications.  相似文献   

7.
The direct numerical simulation(DNS) is carried out for the incompressible viscous turbulent flows over an anisotropic porous wall. Effects of the anisotropic porous wall on turbulence modifications as well as on the turbulent drag reduction are investigated. The simulation is carried out at a friction Reynolds number of 180, which is based on the averaged friction velocity at the interface between the porous medium and the clear fluid domain. The depth of the porous layer ranges from 0.9 to 54 viscous units. The permeability in the spanwise direction is set to be lower than the other directions in the present simulation. The maximum drag reduction obtained is about 15.3% which occurs for a depth of 9 viscous units. The increasing of drag is addressed when the depth of the porous layer is more than 25 wall units. The thinner porous layer restricts the spanwise extension of the streamwise vortices which suppresses the bursting events near the wall. However, for the thicker porous layer, the wall-normal fluctuations are enhanced due to the weakening of the wall-blocking effect which can trigger strong turbulent structures near the wall.  相似文献   

8.
A new monotonic scheme for the approximation of steady scalar transport is formulated and implemented within a collocated finite-volume/pressure-correction algorithm for general turbulent flows in complex geometries. The scheme is essentially a monotonic implementation of the quadratic QUICK interpolation and uses a continuous and compact limiter to secure monotonicity. The principal purpose is to allow an accurate and fully bounded, hence stable, approximation of turbulence convection in the context of two-equation eddy viscosity and Reynolds stress transport modelling of two- and three-dimensional flows, both subsonic and transonic. Among other benefits, this capability permits an assessment to be made of the adequacy of approximating turbulence convection with first-order upwind schemes in conjunction with higher-order formulations for mean-flow properties—a widespread practice. The performance characteristics of the bounded scheme are illustrated by reference to computations for scalar transport, for a transonic flow in a Laval nozzle, for one separated laminar flow and for two separated turbulent flows computed with a non-linear RNG model and full Reynolds stress closure.  相似文献   

9.
Periodic wall oscillations in the spanwise or circumferential direction can greatly reduce the friction drag in turbulent channel and pipe flows. In a concentric annulus, the constant rotation of the inner cylinder can intensify turbulence fluctuations and enhance skin friction due to centrifugal instabilities. In the present study, the effects of the periodic oscillation of the inner wall on turbulent flows through concentric annulus are investigated by the direct numerical simulation (DNS). The radius ratio of the inner to the outer cylinders is 0.1, and the Reynolds number is 2 225 based on the bulk mean velocity Um and the half annulus gap H. The influence of oscillation period is considered. It is found that for short-period oscillations, the Stokes layer formed by the circumferential wall movement can effectively inhibit the near-wall coherent motions and lead to skin friction reduction, while for long-period oscillations, the centrifugal instability has enough time to develop and generate new vortices, resulting in the enhancement of turbulence intensity and skin friction.  相似文献   

10.
Direct numerical simulations of turbulent viscoelastic-fluid flow in a channel with a rectangular orifice were performed to investigate the influence of viscoelasticity on turbulence statistics and turbulent structures downstream of the orifice. The geometry considered is periodic rectangular orifices with 1:2 expansion. The constitutive equation follows the Giesekus model, valid for polymer (or surfactant) solutions, which are generally capable of reducing the turbulent frictional drag in a smooth channel. The friction Reynolds number and the Weissenberg number were set to 100 and 20-30, respectively. A drag reduction of about 20% was achieved in the viscoelastic flows. The onset Reynolds number for the transition from a symmetric to an asymmetric state was found to be shifted to higher values than that for the Newtonian flow. In the viscoelastic flow, the turbulent kinetic energy was decreased and fewer turbulent eddies were observed, as the Kelvin-Helmholtz vortices were quickly damped. Away from the orifice, quasi-streamwise vortices in the viscoelastic flow were sustained for a longer period, accompanied by energy exchange from elastic energy of the viscoelastic fluid to kinetic energy.  相似文献   

11.
The transfer of energy in drag reducing viscoelastic flows is analyzed through a sequence of energetic budgets that include the mean and turbulent kinetic energy, and the mean polymeric energy and mean elastic potential energy. Within the context of single-point statistics, this provides a complete picture of the energy exchange between the mean, turbulent and polymeric fields. The analysis utilizes direct simulation data of a fully developed channel flow at a moderately high friction Reynolds number of 1000 and at medium (30%) and high (58%) drag reduction levels using a FENE-P polymeric model.Results show that the primary effect of the interaction between the turbulent and polymeric fields is to transfer energy from the turbulence to the polymer, and that the magnitude of this transfer does not change between the low and high drag reduction flows. This one-way transfer, with an amplitude independent of the drag reduction regime, comes in contradiction with the purely elastic coupling which is implicit within the elastic theory of the polymer drag reduction phenomenon by Tabor and De Gennes (Europhys. Lett. 2, pp. 519–522, 1986).  相似文献   

12.
Riblet films are a passive method of turbulent boundary layer control that can reduce viscous drag. They have been studied with great detail for over 30 years. Although common riblet applications include flows with Adverse Pressure Gradients (APG), nearly all research thus far has been performed in channel flows. Recent research has provided motivation to study riblets in more complicated turbulent flows with claims that riblet drag reduction can double in mild APG common to airfoils at moderate angles of attack. Therefore, in this study, we compare drag reduction by scalloped riblet films between riblets in a zero pressure gradient and those in a mild APG using high-resolution large eddy simulations. In order to gain a fundamental understanding of the relationship between drag reduction and pressure gradient, we simulated several different riblet sizes that encompassed a broad range of s+ (riblet width in wall units), similarly to many previously published experimental studies. We found that there was only a slight improvement in drag reduction for riblets in the mild APG. We also observed that peak values of streamwise turbulence intensity, turbulent kinetic energy, and streamwise vorticity scale with riblet width. Primary Reynolds shear stresses and turbulence kinetic energy production however scale with the ability of the riblet to reduce skin-friction.  相似文献   

13.
In this paper we report on (two-component) LDV experiments in a fully developed turbulent pipe flow with a drag-reducing polymer (partially hydrolyzed polyacrylamide) dissolved in water. The Reynolds number based on the mean velocity, the pipe diameter and the local viscosity at the wall is approximately 10000. We have used polymer solutions with three different concentrations which have been chosen such that maximum drag reduction occurs. The amount of drag reduction found is 60–70%. Our experimental results are compared with results obtained with water and with a very dilute solution which exhibits only a small amount of drag reduction. We have focused on the observation of turbulence statistics (mean velocities and turbulence intensities) and on the various contributions to the total shear stress. The latter consists of a turbulent, a solvent (viscous) and a polymeric part. The polymers are found to contribute significantly to the total stress. With respect to the mean velocity profile we find a thickening of the buffer layer and an increase in the slope of the logarithmic profile. With respect to the turbulence statistics we find for the streamwise velocity fluctuations an increase of the root mean square at low polymer concentration but a return to values comparable to those for water at higher concentrations. The root mean square of the normal velocity fluctuations shows a strong decrease. Also the Reynolds (turbulent) shear stress and the correlation coefficient between the stream wise and the normal components are drastically reduced over the entire pipe diameter. In all cases the Reynolds stress stays definitely non-zero at maximum drag reduction. The consequence of the drop of the Reynolds stress is a large polymer stress, which can be 60% of the total stress. The kinetic-energy balance of the mean flow shows a large transfer of energy directly to the polymers instead of the route by turbulence. The kinetic energy of the turbulence suggests a possibly negative polymeric dissipation of turbulent energy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
15.
环形通道内湍流旋流流动的数值模拟   总被引:1,自引:0,他引:1  
张健 N  eh  S 《计算力学学报》2000,17(1):14-21
本文应用一种考虑湍流-旋流相互作用及湍流脉动各向异性的新的代数Reynolds应力模型,对环形通道内的湍流旋流流动进行了数值模拟,研究了改主为旋流流数,进口轴向速度及半径比等参数对环形通道内湍流流动的影响,以及对强化环形通道内传热的作用。  相似文献   

16.
王兆印  宋振琪 《力学学报》1996,28(5):522-531
水和粘土悬浮液在水槽中的流动试验证明,在粗糙边界上的粘土悬浮液明渠流阻力明显小于清水流.在同样水力条件下粘土悬液的时均流速比清水流速大得多.当悬液浓度较高时,流动阻力系数比清水流阻力系数的一半还小.实验表明粘土悬液的高粘性和屈服应力抑制了紊动的发展,减小了紊动剪力,导致阻力降低.对于光滑边界湍流,粘土悬液的阻力系数与清水流的相近,不发生减阻现象  相似文献   

17.
The aim of the present work is to investigate the role of intense Reynolds shear-stress events in the generation of the secondary flow in turbulent ducts. We consider the connected regions of flow where the product of the instantaneous fluctuations of two velocity components is higher than a threshold based on the long-time turbulence statistics, in the spirit of the three-dimensional quadrant analysis proposed by Lozano-Durán et al. (J. Fluid Mech., vol. 694, 2012, pp. 100–130). We examine both the geometrical properties of these structures and their contribution to the mean in-plane velocity components, and we perfom a comparison with turbulent channel flow at similar Reynolds number. The contribution to a certain mean quantity is defined as the ensemble average over the detected coherent structures, weighted with their own occupied volume fraction. In the core region of the duct, the contribution of intense events to the wall-normal component of the mean velocity is in very good agreement with that in the channel, despite the presence of the secondary flow in the former. Additionally, the shapes of the three-dimensional objects do not differ significantly in both flows. In the corner region of the duct, the proximity of the walls affects both the geometrical properties of the coherent structures and the contribution to the mean component of the vertical velocity. However, such contribution is less relevant than that of the complementary portion of the flow not included in such objects. Our results show that strong Reynolds shear-stress events are affected by the presence of a corner but, despite the important role of these structures in the dynamics of wall-bounded turbulent flows, their contribution to the secondary flow is relatively low, both in the core and in the corner.  相似文献   

18.
The present work examines the predictive capability of a two-fluid CFD model that is based on the kinetic theory of granular flow in simulating dilute-phase turbulent liquid-particle pipe flows in which the inter-stitial fluid effect on the particle fluctuating motion is significant.The impacts of employing different drag correlations and turbulence closure models to describe the fluid-particle interactions(i.e.drag force and long-range interaction)are examined at both the mean and fluctuating velocity levels.The model pre-dictions are validated using experimental data of turbulent liquid-particle flows in a vertical pipe at different particle Reynolds numbers(ReP > 400 and ReP < 400),which characterize the importance of the vortex shedding phenomenon in the fluid-phase turbulence modulation.The results indicate that(1)the fluctuating velocity level predictions at different ReP are highly sensitive to the drag correlation selec-tion and(2)different turbulence closure models must be employed to accurately describe the long-range fluid-particle interaction in each phase.In general,good agreement is found between the model predic-tions and the experimental data at both the mean and fluctuating velocity levels provided that appropriate combinations of the drag correlation and the turbulence closure model are selected depending on Rep.  相似文献   

19.
壁面展向周期振动的槽道湍流减阻机理的研究   总被引:9,自引:0,他引:9  
利用直接数值模拟研究了带有壁面展向周期振动的槽道湍流.壁面在展向的周期运动使湍流受到抑制,并使壁面摩擦阻力减小.通过对雷诺应力输运方程的分析研究了壁面展向周期振动的减阻机理,进一步揭示了压力变形项在湍流抑制中的关键作用.  相似文献   

20.
The paper investigates buoyancy impact on the vertical flow over a backward-facing step at low Prandtl number by Direct Numerical Simulation. In particular, the very low Prandtl number of liquid sodium, 0.0088, is considered in the regime of mixed convection, i.e. for Richardson numbers below unity. The effects of buoyancy on mean flow, heat transfer and turbulence are assessed. Buoyancy is found to attenuate recirculation and, consequently, increase heat transfer. Turbulence is decreased in the attached boundary layer for moderate buoyancy impact but surpasses the levels found in forced convection at the largest Richardson number investigated. Beyond the mean flow and second moments, the budgets of turbulent kinetic energy, Reynolds shear stress, temperature variance, and turbulent heat flux components are studied and related to the alterations in the mean field quantities. Due to scale separation, production and dissipation nearly balance for temperature variance while this is not the case for turbulent kinetic energy. Similar findings for the turbulent heat fluxes show that the correlation between temperature and pressure gradient is the most important contribution to the budget aside from production and dissipation. In addition to the physical insight into this flow, the data presented may be used for the validation and improvement of turbulence models for liquid metal flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号