首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
An efficient numerical method is developed for the simulation of three dimensional transient dynamic response in thick laminated composite and sandwich plate structures involving very high frequencies and wave numbers. The proposed method incorporates Daubechies wavelet scaling functions for the interpolation of the in-plane displacements with a Galerkin formulation. It further explores the orthonormality and compact support of wavelet scaling functions to produce near diagonal consistent mass matrices and banded stiffness matrices. Hence, an uncoupled equivalent discrete spatial dynamic system is formulated, synthesized and rapidly solved in the wavelet domain using an explicit time integration scheme. The in-plane wavelet interpolation is further combined with an efficient high order layerwise laminate plate theory, that implements Hermite cubic splines for the through-the-thickness approximation of displacement fields. Numerical results are presented on the prediction of guided waves in laminated and thick sandwich composite plates and compared with respective solutions obtained by analytical, semi-analytical and time domain spectral element models. The method yielded higher convergence rates and substantial reductions in computational effort compared to respective time domain spectral finite elements.  相似文献   

2.
A high-order discrete-layer theory and a finite element are presented for predicting the damping of laminated composite sandwich beams. The new layerwise laminate theory involves quadratic and cubic terms for approximation of the in-plane displacement in each discrete layer, while interlaminar shear stress continuity is imposed through the thickness. Integrated damping mechanics are formulated and both laminate and structural stiffness, mass and damping matrices are formed. A finite element method and a beam element are further developed for predicting the free vibration response, including modal frequencies, modal loss factors and through-thickness mode shapes. Numerical results and evaluations of the present model are shown. Modal frequencies and damping of sandwich composite beams are measured and correlated with predicted values. Finally, parametric studies illustrate the effect of core thickness and face lamination on modal damping and frequency values.  相似文献   

3.
基于结构的对称性提出了用于三维车辆轨道耦合系统高效随机动力响应分析的虚拟激励方法.车辆采用刚体动力学模型,轨道结构利用三维轨道广义单元建模,车辆与轨道通过线性轮轨关系耦合.采用虚拟激励法将高低、方向和水平三类轨道不平顺转化为一系列筒谐的虚拟不平顺;考虑车辆及轨道结构的对称性,分别推导了耦合系统的对称和反对称凝聚矩阵,提出了用于车辆轨道耦合系统动力响应计算的自由度凝聚方法,将耦合系统的自由度缩减至原来的一半以下,并在此基础上实现了耦合系统随机振动的高效分析.数值算例将本文方法与传统有限元方法进行对比,验证了本文方法的正确性和有效性.  相似文献   

4.
A theoretical framework for analyzing the pre- and postbuckling response of composite laminates and plates with piezoactuators and sensors is presented. The mechanics include nonlinear effects due to large rotations and stress stiffening, and are incorporated into a coupled mixed-field piezoelectric laminate theory. Using the previous mechanics, a nonlinear finite element method and an incremental-iterative solution are formulated for the analysis of nonlinear adaptive plate structures subject to in-plane electromechanical loading. A novel eight-node nonlinear plate finite element is also developed. Evaluation cases predict the buckling and postbuckling response of adaptive composite beams and plates with piezoelectric actuators and sensors. The case of piezoelectric buckling and postbuckling induced by the actuators is addressed and quantified. Finally, the possibility to actively mitigate the mechanical buckling and postbuckling response of adaptive piezocomposite plates is illustrated.  相似文献   

5.
Herein, an enhanced spectral finite element (SFE) formulation to calculate the time–transient response in cylindrical waveguides is proposed. The original aspect over SFE-based formulations consists in the possibility to account for the effect of material absorption, i.e. guided waves attenuation, on the calculation of the time–transient response.First, the damped steady-state response is constructed by a weighted superposition of the waveguide modal properties obtained from the spectral decomposition of the governing wave equation. To this purpose an enhanced spectrally formulated finite element is developed, in which material damping is included allowing for complex stress–strain viscoelastic constitutive relations in force of the correspondence principle. Dispersive modal properties for the damped waveguide (phase velocity, energy velocity, attenuation and wavestructures) follow straightforwardly by simple formulae. Next, the frequency response of the problem is calculated by weighting the modal data and the spectrum of the applied time-dependent force via Cauchy residue theorem. Finally, the inverse Fourier transform of the frequency response leads to the time–transient response for propagative damped guided waves.The approach is not restricted to any anisotropy degree, holds for any linear viscoelastic constitutive relation that can be characterized and formulated in the frequency domain and it can be applied to SFE formulations for arbitrary cross-section waveguides. A study on guided waves propagating in a scheduled 4.in-40 ANSI steel pipe is presented, where the steel is considered first as perfectly elastic and then as an hysteretic viscoelastic medium, in order to show the effect of material absorption on the time–transient response.  相似文献   

6.
This paper deals with large amplitude free flexural vibrations of laminated composite plates using a 9-node Heterosis degenerated isoparametric quadrilateral element, including the effects of transverse shear and rotary inertia. The nonlinear dynamic equations of the plates are formulated in von Karman's sense. Amplitude-frequency relationships are obtained through dynamic response history using the Newmark numerical integration scheme. Detailed numerical results based on various parameters are presented for orthotropic laminated plates with different boundary conditions. The rectangular anti-symmetric cross-ply plates show the softening type of nonlinearity for initial small amplitudes. The displacement amplitudes decrease and nonlinear frequencies increase with the increment of time. Supported by the NNSFC (No. 19672033), the National Key Project on Basic Research and Applied Research (PD9521904) and the Doctoral Training Foundation of Education Commission of China(No. 98000304).  相似文献   

7.
Beams and plates manufactured from laminates of composite materials have distinct advantages in a significant number of applications. However, the anisotropy arising from these materials adds a significant degree of complexity, and thus time, to the stress and deformation analyses of such components, even using numerical approaches such as finite elements. The analysis of composite laminate beams subjected to uniform extension, bending, and/or twisting loads was performed by a novel implementation of the usual finite element method. Due to the symmetric features of the deformations, only a thin slice of the beam to be analysed needs to be modelled. Conventional three-dimensional solid finite elements were used for the structural discretization. The accurate deformation relationships were formulated and implemented through the coupling of nodal translational degrees of freedom in the numerical analysis. A sample solution for a rectangular composite laminate beam is presented to show the validity and accuracy of the proposed method.  相似文献   

8.
The effect of an imperfect interface on the dispersive behavior of in-plane time-harmonic symmetric waves in a pre-stressed incompressible symmetric layered composite, was analyzed recently by Leungvichcharoen and Wijeyewickrema (2003). In the present paper the corresponding case for time harmonic anti-symmetric waves is considered. The bi-material composite consists of incompressible isotropic elastic materials. The imperfect interface is simulated by a shear-spring type resistance model, which can also accommodate the extreme cases of perfectly bonded and fully slipping interfaces. The dispersion relation is obtained by formulating the incremental boundary-value problem and using the propagator matrix technique. The dispersion relations for anti-symmetric and symmetric waves differ from each other only through the elements of the propagator matrix associated with the inner layer. The behavior of the dispersion curves for anti-symmetric waves is for the most part similar to that of symmetric waves at the low and high wavenumber limits. At the low wavenumber limit, depending on the pre-stress for perfectly bonded and imperfect interface cases, a finite phase speed may exist only for the fundamental mode while other higher modes have an infinite phase speed. However, for a fully slipping interface in the low wavenumber region it may be possible for both the fundamental mode and the next lowest mode to have finite phase speeds. For the higher modes which have infinite phase speeds in the low wavenumber region an expression to determine the cut-off frequencies is obtained. At the high wavenumber limit, the phase speeds of the fundamental mode and the higher modes tend to the phase speeds of the surface wave or the interfacial wave or the limiting phase speed of the composite. The bifurcation equation obtained from the dispersion relation yields neutral curves that separate the stable and unstable regions associated with the fundamental mode or the next lowest mode. Numerical examples of dispersion curves are presented, where when the material has to be prescribed either Mooney–Rivlin material or Varga material is assumed. The effect of imperfect interfaces on anti-symmetric waves is clearly evident in the numerical results.  相似文献   

9.
根据变分原理,得到热弹体运动方程和热传导方程相对应的有限元方程. 通过数值积分方法求解有限元方程,得到脉冲激光线源在水/铝、空气/铝这两种流-固界面上热弹激励的泄漏Lamb波瞬态波形. 计算结果表明,泄漏Lamb波不但存在于液-固界面,而且存在于气-固界面;和Lamb波相反,泄漏Lamb波的S_0模态是反对称的,而A_0模态是对称的;但由于这两种流-固界面的性质差异导致泄漏Lamb波的波形和幅度不同.   相似文献   

10.
Bi-directional fluid–structure interaction becomes important when viscous flow changes the geometry of the domain significantly because of the pressure load. Large deformation in domain causes numerical convergence problems, which are solved by mesh smoothing, re-meshing and a time discrete iterative solver algorithm using industrial computational fluid dynamics and finite element analysis code. In this paper, this approach is used for laminated composite propellers considered as mixers. It experiences heavy thrust, which causes large deformations. Each layer of laminate is modeled as a solid element with anisotropic material data. Comparative study is presented between uni-directional and bi-directional fluid–structure interaction for mixer blades. Change in pressure distribution, stress distribution, thrust, torque and pitch angle of the blade are presented in later parts of the paper.  相似文献   

11.
In a recent paper, Cho and Kim [Journal of Applied Mechanics] proposed a higher-order cubic zigzag theory of laminated composites with multiple delaminations. The proposed theory is not only accurate but also efficient because it work with a minimal number of degrees of freedom with the application of interface continuity conditions as well as bounding surface conditions of transverse shear stresses including delaminated interfaces. In this work, we investigate the dynamic behavior of laminated composite plates with multiple delaminations. A four-node finite element based on the efficient higher-order zigzag plate theory of laminated composite plates with multiple delaminations is developed to refine the prediction of frequencies, mode shape, and time response. Through the dynamic version of the variational approach, the dynamic equilibrium equations and variationally consistent boundary conditions are obtained. Natural frequency prediction and time response analysis of a composite plate with multiple delaminations demonstrate the accuracy and efficiency of the present finite element method. To prevent penetration violation at the delamination interfaces, unilateral contact constraints by Lagrange multiplier method are applied in the time response analysis. The present finite element is suitable for the prediction of dynamic response of thick composite plates with multiple and arbitrary shaped delaminations.  相似文献   

12.
Multiobjective design and control optimization of composite laminated plates is presented to minimize the postbuckling dynamic response and maximize the buckling load. The control objective aims at dissipating the postbuckling elastic energy of the laminate with the minimum possible expenditure of control energy using a closed-loop distributed force. The layer thicknesses and fiber orientations are taken as design variables. The objectives of the optimization problem are formulated based on a shear deformation theory including the von-Karman non-linear effect for various cases of boundary conditions. The non-linear control problem is solved iteratively until an appropriate convergence criterion is satisfied based on Liapunov–Bellman theory. Liapunov function is taken as a sum of positive definite functions with different degrees. Comparative examples for three-layer symmetric and four-layer antisymmetric laminates are given for various cases of edges conditions. Graphical study is carried out to assess the accuracy of results obtained due to the successive iterations. The influences of the boundary conditions, orthotropy ratio, shear deformation, aspect ratio on the laminate optimal design are elucidated.  相似文献   

13.
The dispersive behavior of small amplitude waves propagating along a non-principal direction in a pre-stressed, compressible elastic layer is considered. One of the principal axes of stretch is normal to the elastic layer and the direction of propagation makes an angle θ with one of the in-plane principal axes. The dispersion relations which relate wave speed and wavenumber are obtained for both symmetric and anti-symmetric motions by formulating the incremental boundary value problem for a general strain energy function. The behavior of the dispersion curves for symmetric waves is for the most part similar to that of the anti-symmetric waves at the low and high wavenumber limits. At the low wavenumber limit, depending on the pre-stress and propagation angle, it may be possible for both the fundamental mode and the next lowest mode to have finite phase speeds, while other higher modes have an infinite phase speed. At the high wavenumber limit, the phase speeds of the fundamental mode and the higher modes tend to the Rayleigh surface wave speed and the limiting wave speeds of the layer, respectively. Numerical results are presented for a Blatz–Ko material and the effect of the propagation angle is clearly illustrated.  相似文献   

14.
This paper investigates the electro-mechanical behaviour of a thick, laminated actuator with piezoelectric and isotropic lamina under externally applied electric loading using a new two-dimensional computational model. The elastic core is relatively thick and thus it is modelled by Timoshenko thick-beam theory. Although the piezoelectric lamina is a beam-like layer, it is formulated via a two-dimensional model because of not only the strong electro-mechanical coupling, but also of the presence of a two-dimensional electric field. It is shown in this paper that a one-dimensional model for the piezoelectric beam-like layer is inadequate. The piezoelectric model is constructed within the scope of linear piezoelectricity. The actuation response is induced through the application of external electric voltage. Under the strong coupling of elasticity and electricity, the strain energy and work of electric potential are presented. The electro-mechanical response of the laminated Timoshenko beam is formulated and determined via a variational energy principle. Numerical examples presented illustrate convincing comparison with finite element solutions and existing published data. New numerical solutions are also presented to investigate the geometric effect on the electro-mechanical bending behaviour.  相似文献   

15.
It is now well known that Fick’s Law is frequently inadequate for describing moisture diffusion in polymers and polymer composites. Non-Fickian or anomalous diffusion is likely to occur when a polymer composite laminate is subjected to external stresses that could give rise to internal damage in the form of matrix cracks. As a result, it is necessary to take into account the combined effects of temperature, stress, and damage in the construction of such a model. In this article, a modeling methodology based on irreversible thermodynamics applied within the framework of composite macro-mechanics is presented, that would allow characterization of non-Fickian diffusion coefficients from moisture-weight-gain data for laminated composites. A symmetric damage tensor based on continuum damage mechanics is incorporated in this model by invoking the principle of invariance with respect to coordinate transformations. For tractability, the diffusion-governing equations are simplified for the special case of a laminate, with uniformly distributed matrix cracks, that is subjected to a uniaxial tensile stress. The final form for effective diffusivity obtained from this derivation indicates that the effective diffusivity for this case is a quadratic function of crack density. A finite element procedure that extends this methodology to more complex shapes and boundary conditions is also presented. Comparisons with test data for a 5-harness satin textile composite are provided for model verifications.  相似文献   

16.
Transient dynamic responses of an elastic cracked solid subjected to in-plane surface loadings are investigated in this study. Two vertical cracks, a surface-breaking crack and a sub-surface crack, are considered. The frequency responses of the plane strain problem are calculated by the computational mechanics combining the finite element method with the boundary integral equation. The finite element method is used for the near-field enclosing the crack, while the boundary integral equation is applied for the far-field to satisfy the Sommerfeld radiation condition. The transient responses are then obtained using fast Fourier transform. Surface displacements, crack opening displacements, and dynamic stress intensity factors are presented to show the significant effects of the cracks. The interaction between the elastic waves and the cracks as well as the mode conversion phenomena can be observed and understood through the numerical simulations.  相似文献   

17.
The paper presents an approach for the formulation of general laminated shells based on a third order shear deformation theory. These shells undergo finite (unlimited in size) rotations and large overall motions but with small strains. A singularity-free parametrization of the rotation field is adopted. The constitutive equations, derived with respect to laminate curvilinear coordinates, are applicable to shell elements with an arbitrary number of orthotropic layers and where the material principal axes can vary from layer to layer. A careful consideration of the consistent linearization procedure pertinent to the proposed parametrization of finite rotations leads to symmetric tangent stiffness matrices. The matrix formulation adopted here makes it possible to implement the present formulation within the framework of the finite element method as a straightforward task.  相似文献   

18.
A coupled linear layerwise laminate theory and a beam FE are formulated for analyzing delaminated composite beams with piezoactuators and sensors. The model assumes zig-zag fields for the axial displacements and the electric potential and it treats the discontinuities in the displacement fields due to the delaminations as additional degrees of freedom. The formulation naturally includes the excitation of piezoelectric actuators, their interactions with the composite laminate, and the effect of delamination on the predicted sensory voltage. The quasistatic and modal response of laminated composite Gr/Epoxy beams with active or sensory layers having various delamination sizes is predicted. The numerical results illustrate the strong effect of delamination on the sensor voltage, on through the thickness displacement and on the stress fields. Finally, the effect of delamination on modal frequencies and shapes are predicted and compared with previously obtained experimental results.  相似文献   

19.
受分布载荷复合材料层合梁应力分析的一般理论   总被引:1,自引:0,他引:1  
为了克服层合梁经典理论的缺点,提高层间应力的计算精度,提出了受分布载荷层合梁应力分析的一般理论。首先根据叠加原理将原始受力状态分解成对称与反对称受力状态。然后用正交完备的三角级数和勒让德级数构造这两种受力状态中每一铺层与层间胶层的位移场,并应用广义势能原理确定位移场中的待定系数,从而确定层合梁的位移场和应力场。同时,单层梁与单层梁之间的胶层被视为各向同性材料并且与其它材料层具有相似的力学特性,即具有有限厚度、有限弹性常数。计算结果显示,这种解法的收敛性非常好,根据物理方程与根据平衡方程得到的横向剪应力和正应力分布非常一致。  相似文献   

20.
Flaws in composite laminates may result in a severe loss of static and dynamic strength. Such flaws may be inherent or gained by misadventure. The extent of this loss can be influenced by several factors including loading, laminate stacking sequence, lamina properties, flaw size and damage type.In this study, the free-edge delamination of a laminated composite under compression loading is investigated. Computational, analytical and experimental tests are performed on a graphite/epoxy laminate AS4/3501-6 containing near surface edge defects and the crack opening behaviour is investigated.The computational analysis consists of a three dimensional finite element model where the plies can be catered for individually and interply delamination modelled. In the experimental investigations, a delamination is simulated by inserting teflon film at appropriate locations during the lay-up process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号