首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a closed-form expression of the size-dependent sharp indentation loading curve has been proposed based on dimensional analysis and the finite deformation Taylor-based nonlocal theory (TNT) of plasticity (Int. J. Plasticity 20 (2004) 831). The key issue is to link the results of FEM based on TNT plasticity with those obtained using conventional FEM by taking as the effective strain gradient, η, that presented in the work of Nix and Gao (J. Mech. Phys. Solids 46 (1998) 411), thus avoiding large-scale finite element computations using strain gradient plasticity theories. Two experiments carried out on 316 stainless-steel and pure titanium have been used to verify the effectiveness of the present analytical model; the results demonstrate that the present analytical expression of the size-dependent indentation loading curve corresponds very well to the experimental indentation loading curve. The empirical constant, α, in the Taylor model estimated from the experimental data has the correct order of magnitude. Also, the results presented in this part can be further applied to establish an analytical framework to extract the plastic properties of metallic materials with sharp indentation on a small scale where the size effect caused by geometrically necessary dislocations is significant. This will be discussed in detail in the second part of the paper.  相似文献   

2.
Plastic deformation exhibits strong size dependence at the micron scale, as observed in micro-torsion, bending, and indentation experiments. Classical plasticity theories, which possess no internal material lengths, cannot explain this size dependence. Based on dislocation mechanics, strain gradient plasticity theories have been developed for micron-scale applications. These theories, however, have been limited to infinitesimal deformation, even though the micro-scale experiments involve rather large strains and rotations. In this paper, we propose a finite deformation theory of strain gradient plasticity. The kinematics relations (including strain gradients), equilibrium equations, and constitutive laws are expressed in the reference configuration. The finite deformation strain gradient theory is used to model micro-indentation with results agreeing very well with the experimental data. We show that the finite deformation effect is not very significant for modeling micro-indentation experiments.  相似文献   

3.
纳米压入测试可以原位获取材料的诸多力学性能,包括弹性模量,硬度,屈服应力,应变率敏感指数等。本文利用应变率阶跃测试技术对多晶铜试样的应变率敏感性进行测试分析,硬度-位移曲线表明压头下方所存在的变形梯度对各阶跃应变率下的硬度值存在明显影响;采用基于晶体细观机制的塑性应变梯度理论对压入变形梯度效应予以修正,比较了修正与未修正数据所得的应变率敏感指数,在有效剔除压入变形梯度影响的基础上,应变率阶跃测试可实现单次压入下材料应变率敏感性的测试表征。  相似文献   

4.
Spherical indentation is studied based on numerical analysis and experiment, to develop robust testing techniques to evaluate isotropic elastic–plastic material properties of metals. The representative stress and plastic strain concept is critically investigated via finite element analysis, and some conditions for the representative values are suggested. The representative values should also be a function of material properties, not only indenter angle for sharp indenter and indentation depth for spherical indenter. The pros and cons of shallow and deep spherical indentation techniques are also discussed. For an indentation depth of 20% of an indenter diameter, the relationships between normalized indentation parameters and load–depth data are characterized, and then numerical algorithm to estimate material elastic–plastic curve is presented. From the indentation load–depth curve, the new approach provides stress–strain curve and the values of elastic modulus, yield strength, and strain-hardening exponent with an average error of less than 5%. The method is confirmed to be valid for various elastic properties of indenter. Experimental validation of the approach then is performed by using developed micro-indentation system. For the material severely disobeying power law hardening, a modified method to reduce errors of predicted material properties is contrived. It is found that our method is robust enough to get ideal power law properties, and applicable to input of more complex physics.  相似文献   

5.
A further development of the mechanism-based strain gradient plasticity model well established in literature is reported. The major new element is the inclusion of the cell size effect in dislocation cell forming materials. It is based on a ‘phase mixture’ approach in which the dislocation cell interiors and dislocation cell walls are treated as separate ‘phases’. The model was applied to indentation testing of copper severely pre-strained by equal channel angular pressing. The deformation behaviour and the intrinsic length scale parameter of the gradient plasticity model were related to the micro-structural characteristics, notably the dislocation cell size, resulting from the deformation history of the material.  相似文献   

6.
Spherical indentation approach (Lee et al., 2005, Lee et al., 2010) for the evaluation of bulk material properties is extended to that for elastic–plastic properties of film-on-substrate systems. Our interest focuses on single isotropic, metallic, and elastic–plastic film on a substrate, and we do not consider the size effects in plasticity behavior. We first determine the optimal data acquisition location, where the strain gradient is the least and the effect of friction is negligible. Dimensional analysis affords the mapping parameters as functions of normalized indentation variables. An efficient way is further introduced to reduce both the number of analyses and the regression order of mapping functions. The new numerical approach to the film indentation technique is then proposed by examining the finite element solutions at the optimal point. With the new approach, the values of elastic modulus, yield strength, and strain-hardening exponent of film materials are successfully obtained from the spherical indentation tests. We have shown that the effective property ranges such as indenter properties, substrate modulus, and E/Es ratio can be extended without additional simulations and even loss of accuracy. For other ranges of variables or other properties, which are not dealt with in this study, this methodology is applicable through resetting FEA variables and finding proper normalized parameters.  相似文献   

7.
The size effect in conical indentation of an elasto-plastic solid is predicted via the Fleck and Willis formulation of strain gradient plasticity (Fleck, N.A. and Willis, J.R., 2009, A mathematical basis for strain gradient plasticity theory. Part II: tensorial plastic multiplier, J. Mech. Phys. Solids, 57, 1045–1057). The rate-dependent formulation is implemented numerically and the full-field indentation problem is analyzed via finite element calculations, for both ideally plastic behavior and dissipative hardening. The isotropic strain-gradient theory involves three material length scales, and the relative significance of these length scales upon the degree of size effect is assessed. Indentation maps are generated to summarize the sensitivity of indentation hardness to indent size, indenter geometry and material properties (such as yield strain and strain hardening index). The finite element model is also used to evaluate the pertinence of the Johnson cavity expansion model and of the Nix–Gao model, which have been extensively used to predict size effects in indentation hardness.  相似文献   

8.
An expanding cavity model (ECM) for determining indentation hardness of elastic strain-hardening plastic materials is developed. The derivation is based on a strain gradient plasticity solution for an internally pressurized thick-walled spherical shell of an elastic power-law hardening material. Closed-form formulas are provided for both conical and spherical indentations. The indentation radius enters these formulas with its own dimensional identity, unlike that in classical plasticity based ECMs where indentation geometrical parameters appear only in non-dimensional forms. As a result, the newly developed ECM can capture the indentation size effect. The formulas explicitly show that indentation hardness depends on Young’s modulus, yield stress, strain-hardening exponent and strain gradient coefficient of the indented material as well as on the geometry of the indenter. The new model reduces to existing classical plasticity based ECMs (including Johnson’s ECM for elastic–perfectly plastic materials) when the strain gradient effect is not considered. The numerical results obtained using the newly developed model reveal that the hardness is indeed indentation size dependent when the indentation radius is very small: the smaller the indentation, the larger the hardness. Also, the indentation hardness is seen to increase with the Young’s modulus and strain-hardening level of the indented material for both conical and spherical indentations. The strain-hardening effect on the hardness is observed to be significant for materials having strong strain-hardening characteristics. In addition, it is found that the indentation hardness increases with decreasing cone angle of the conical indenter or decreasing radius of the spherical indenter. These trends agree with existing experimental observations and model predictions.  相似文献   

9.
板材三维曲面翻边的逆成形预示与修边线确定   总被引:2,自引:0,他引:2  
基于全量塑性理论和考虑任意形状压料面影响的一步成形有限元逆算法,提出一 种板材三维曲面翻边成形和三维修边线的快速模拟方法,能够真实模拟三维翻边过程,进而 高精度地确定翻边高度和修边线轮廓形状. 收缩和伸长两种典型的翻边成形模拟结果与基于 增量塑性理论的有限元正算法比较,表明了该方法的有效性和高效率.  相似文献   

10.
考虑压头曲率半径和应变梯度的微压痕分析   总被引:2,自引:0,他引:2  
在压头尖端曲率半径取100nm的前提下,采用Chen和Wang的应变梯度理论,对微压痕实验进行了系统的数值分析. 首先通过拟合载荷-位移实验曲线的后半段来确定材料的屈服应力和幂硬化指数值,然后用有限元方法数值模拟压痕实验,并将计算得到的整段载荷-位移曲线及硬度-位移曲线和实验结果进行了比较. 结果表明应变梯度理论所预测的计算结果和实验结果很好地符合,包括压痕深度在亚微米和微米范围内的整段曲线.  相似文献   

11.
The strain gradient work hardening is important in micro-indentation of bulk metals and thin metallic films, though the indentation of thin films may display very different behavior from that of bulk metals. We use the conventional theory of mechanism-based strain gradient plasticity (CMSG) to study the indentation of a hard tungsten film on soft aluminum substrate, and find good agreement with experiments. The effect of friction stress (intrinsic lattice resistance), which is important in body-center-cubic tungsten, is accounted for. We also extend CMSG to a finite deformation theory since the indentation depth in experiments can be as large as the film thickness. Contrary to indentation of bulk metals or soft metallic films on hard substrate, the micro-indentation hardness of a hard tungsten film on soft aluminum substrate decreases monotonically with the increasing depth of indentation, and it never approaches a constant (macroscopic hardness). It is also shown that the strain gradient effect in the soft aluminum substrate is insignificant, but that in the hard tungsten thin film is important in shallow indentation. The strain gradient effect in tungsten, however, disappears rapidly as the indentation depth increases because the intrinsic material length in tungsten is rather small.  相似文献   

12.
Standard measures of local deformation such as deformation gradient, strain, elastic deformation, and plastic deformation are dimensionless. However, many macroscopic and submacroscopic geometrical changes observed in continuous bodies result in the formation of zones across whose boundaries significant changes in geometry can occur. In order to predict the sizes of such zones and their influence on material response, theories of elasticity and plasticity have been employed in which second gradients of deformation, gradients of strain, as well as gradients of elastic or of plastic deformation are taken into account. The theory of structured deformations provides additive decompositions of first deformation gradient and of second deformation gradient, valid for large deformations of any material, in which each term has a multiscale geometrical interpretation corresponding to the presence or absence of submacroscopic disarrangements (non-smooth geometrical changes such as slips and void formation). This article provides a field theory that broadens the earlier field theory, elasticity with disarrangements, by including energetic contributions from submacroscopic “gradient-disarrangements” (limits of averages of jumps in gradients of approximating deformations) and by treating particular kinematical conditions as internal constraints. An explicit formula is obtained showing the manner in which submacroscopic gradient-disarrangements determine a defectiveness density analogous to the dislocation density in theories of plasticity. A version of the new field theory incorporates this defectiveness density to obtain a counterpart of strain-gradient plasticity, while another instance of elasticity with gradient-disarrangements recovers an instance of strain-gradient elasticity with symmetric Cauchy stress. All versions of the new theory included here are compatible with the Second Law of Thermodynamics.  相似文献   

13.
Recent experiments have shown that metallic materials display significant size effect at the micron and sub-micron scales. This has motivated the development of strain gradient plasticity theories, which usually involve extra boundary conditions and possibly higher-order governing equations. We propose a finite deformation theory of nonlocal plasticity based on the Taylor dislocation model. The theory falls into Rice's theoretical framework of internal variables [J Mech Phys Solids 19 (1971) 433], and it does not require any extra boundary conditions. We apply the theory to study the micro-indentation hardness experiments, and it agrees very well with the experimental data over a wide range of indentation depth.  相似文献   

14.
Theoretical analysis and finite element (FE) simulation have been carried out for a constant specific load rate (CSLR) indentation creep test. Analytical results indicate that both the representative stress and the indentation strain rate become constant after a transient period. Moreover, the FE simulation reveals that both the contours of equivalent stress and equivalent plastic strain rate underneath the indenter evolve with geometrical self-similarity. This suggests that pseudo-steady indentation creep occurs in the region beneath the indenter. The representative points in the region are defined as the ones with the equivalent stress equal to the representative stress. In addition, it is revealed that the proportionality between indentation strain rate and equivalent plastic strain rate holds at the representative points during the pseudo-steady indentation creep of a power law material. A control volume (CV) beneath the indenter, which governs the indenter velocity, is identified. The size of the CV at the indented surface is approximately 2.5 times the size of the impression. The stress exponent for creep can be obtained from the pseudosteady indentation creep data. These results demonstrate that the CSLR testing technique can be used to evaluate creep parameters with the same accuracy as conventional uniaxial creep tests.  相似文献   

15.
A plane strain study of wedge indentation of a thin film on a substrate is performed. The film is modelled with the strain gradient plasticity theory by Gudmundson [Gudmundson, P., 2004. A unified treatment of strain gradient plasticity. Journal of the Mechanics and Physics of Solids 52, 1379–1406] and analysed using finite element simulations. Several trends that have been experimentally observed elsewhere are captured in the predictions of the mechanical behaviour of the thin film. Such trends include increased hardness at shallow depths due to gradient effects as well as increased hardness at larger depths due to the influence of the substrate. In between, a plateau is found which is observed to scale linearly with the material length scale parameter. It is shown that the degree of hardening of the material has a strong influence on the substrate effect, where a high hardening modulus gives a larger impact on this effect. Furthermore, pile-up deformation dominated by plasticity at small values of the internal length scale parameter is turned into sink-in deformation where plasticity is suppressed for larger values of the length scale parameter. Finally, it is demonstrated that the effect of substrate compliance has a significant effect on the hardness predictions if the effective stiffness of the substrate is of the same order as the stiffness of the film.  相似文献   

16.
The classical flow theory of plasticity has been extended to the large strain range for anisotropic metallic materials. The following concepts have been incorporated into the constitutive framework: (1) the convected coordinates and the contravariant true stress, (2) an observer independent yield function, (3) the convected rate for general kinematics of deformation, and (4) the rotation of material texture expressed by a constitutive spin. The theory has been applied to the problem of free-end torsion of a thin-walled tube. The predicted results of shear stress-strain curve, axial strain versus shear strain curve, back stress versus shear strain curve, and initial and subsequent yield surfaces compare favorably with experimental data obtained by the author and his co-workers. It has been shown that the yield function defined by the contravariant true stress can account for the distortion of the yield loci.  相似文献   

17.
The mechanical properties of film–substrate systems have been investigated through nano-indentation experiments in our former paper (Chen, S.H., Liu, L., Wang, T.C., 2005. Investigation of the mechanical properties of thin films by nano-indentation, considering the effects of thickness and different coating–substrate combinations. Surf. Coat. Technol., 191, 25–32), in which Al–Glass with three different film thicknesses are adopted and it is found that the relation between the hardness H and normalized indentation depth h/t, where t denotes the film thickness, exhibits three different regimes: (i) the hardness decreases obviously with increasing indentation depth; (ii) then, the hardness keeps an almost constant value in the range of 0.1–0.7 of the normalized indentation depth h/t; (iii) after that, the hardness increases with increasing indentation depth. In this paper, the indentation image is further investigated and finite element method is used to analyze the nano-indentation phenomena with both classical plasticity and strain gradient plasticity theories. Not only the case with an ideal sharp indenter tip but also that with a round one is considered in both theories. Finally, we find that the classical plasticity theory can not predict the experimental results, even considering the indenter tip curvature. However, the strain gradient plasticity theory can describe the experimental data very well not only at a shallow indentation depth but also at a deep depth. Strain gradient and substrate effects are proved to coexist in film–substrate nano-indentation experiments.  相似文献   

18.
The predominant deformation mode during material failure is shear. In this paper, a crystal plasticity scheme for explicit time integration codes is developed based on a forward Euler algorithm. The numerical model is incorporated in the UMAT subroutine for implementing rate-dependent crystal plasticity model in LS-DYNA/Explicit. The sheet is modeled as a face centered cubic (FCC) polycrystalline aggregate, and a finite element analysis based on rate-dependent crystal plasticity is implemented to analyze the effects of three different strain paths consisting predominantly of shear. Finite element meshes containing texture data are created with solid elements. The material model can incorporate information obtained from electron backscatter diffraction (EBSD) and apply crystal orientation to each element as well as account for texture evolution. Single elements or multiple elements are used to represent each grain within a microstructure. The three dimensional (3D) polycrystalline microstructure of the aluminum alloy AA5754 is modeled and subjected to three different strain rates for each strain path. The effects of strain paths, strain rates and thermal softening on the formation of localized deformation are investigated. Simulations show that strain path is the most dominant factor in localized deformation and texture evolution.  相似文献   

19.
The introduction of controlled gradients in plastic properties is known to influence the resistance to damage and cracking at contact surfaces in many tribological applications. In order to assess potentially beneficial effects of plastic property gradients in tribological applications, it is essential first to develop a comprehensive and quantitative understanding of the effects of yield strength and strain hardening exponent on contact deformation under the most fundamental contact condition: normal indentation. To date, however, systematic and quantitative studies of plasticity gradient effects on indentation response have not been completed. A comprehensive parametric study of the mechanics of normal indentation of plastically graded materials was therefore undertaken in this work by recourse to finite element method (FEM) computations. On the basis of a large number of computational simulations, a general methodology for assessing instrumented indentation response of plastically graded materials is formulated so that quantitative interpretations of depth-sensing indentation experiments could be performed. The specific case of linear variation in yield strength with depth below the indented surface is explored in detail. Universal dimensionless functions are extracted from FEM simulations so as to predict the indentation load versus depth of penetration curves for a wide variety of plastically graded engineering metals and alloys for interpretation of, and comparisons with, experimental results. Furthermore, the effect of plasticity gradient on the residual indentation pile-up profile is systematically studied. The computations reveal that pile-up of the graded alloy around the indenter, for indentation with increasing yield strength beneath the surface, is noticeably higher than that for the two homogeneous reference materials that constitute the bounding conditions for the graded material. Pile-up is also found to be an increasing function of yield strength gradient and a decreasing function of frictional coefficient. The stress and plastic strain distributions under the indenter tip with and without plasticity gradient are also examined to rationalize the predicted trends. In Part II of this paper, we compare the predictions of depth-sensing indentation and pile-up response with experiments on a specially made, graded model Ni-W alloy with controlled gradients in nanocrystalline grain size.  相似文献   

20.
A finite deformation theory of mechanism-based strain gradient (MSG) plasticity is developed in this paper based on the Taylor dislocation model. The theory ensures the proper decomposition of deformation in order to exclude the volumetric deformation from the strain gradient tensor since the latter represents the density of geometrically necessary dislocations. The solution for a thin cylinder under large torsion is obtained. The numerical method is used to investigate the finite deformation crack tip field in MSG plasticity. It is established that the stress level around a crack tip in MSG plasticity is significantly higher than its counterpart (i.e. HRR field) in classical plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号