首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Kinematic hardening models describe a specific kind of plastic anisotropy which evolves with the deformation process. It is well known that the extension of constitutive relations from small to finite deformations is not unique. This applies also to well-established kinematic hardening rules like that of Armstrong-Frederick or Chaboche. However, the second law of thermodynamics offers some possibilities for generalizing constitutive equations so that this ambiguity may, in some extent, be moderated. The present paper is concerned with three possible extensions, from small to finite deformations, of the Armstrong-Frederick rule, which are derived as sufficient conditions for the validity of the second law. All three models rely upon the multiplicative decomposition of the deformation gradient tensor into elastic and plastic parts and make use of a yield function expressed in terms of the so-called Mandel stress tensor. In conformity with this approach, the back-stress tensor is defined to be of Mandel stress type as well. In order to compare the properties of the three models, predicted responses for processes with homogeneous and inhomogeneous deformations are discussed. To this end, the models are implemented in a finite element code (ABAQUS).  相似文献   

2.
Using the process theory of A. A. Il’yushin, we consider the problem of determining the thermomechanical parameters of a material element for specified deformation and temperature-variation processes with allowance for the elastic, plastic, and viscous properties of superplastic deformation. The relations obtained are applicable for the case of arbitrary stresses and finite strains. The strain and stress measures are decomposed into elastic, plastic, and viscous components by classifying the processes into reversible, irreversible equilibrium, and nonequilibrium processes. Tula State University, Tula 300600. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 5, pp. 164–172, September–October, 1999.  相似文献   

3.
4.
In this paper, the concept of hypo-elasticity is generalized to the micropolar continuum theory, and the general forms of the constitutive equations of the micropolar hypo-elastic materials are presented. A new co-rotational objective rate whose spin is the micropolar gyration tensor is introduced which describes the deformation of the material in view of an observer attached to the micro-structure. As special case, simplified versions of the proposed constitutive equations are given in which the same fourth-order elasticity tensors are used as in the micropolar linear elasticity. A 2-D finite element formulation for large elastic deformation of micropolar hypo-elastic media based on the simplified constitutive equations in conjunction with Jaumann and gyration rates is presented. As an example, buckling of a shallow arc is examined, and it is shown that an increase in the micropolar material parameters results in an increase in the buckling load of the arc. Also, it is shown that micropolar effects become important for deformations taking place at small scales.  相似文献   

5.
采用共旋应变的三维热弹塑性有限变形有限元法   总被引:3,自引:0,他引:3  
本文采用线性化共旋应变张量和增率型虚功原理,建立了有限变形热力耦合弹塑性有限元法。在该方法中,材料的流动应力取为应变总量、应变速率和温度的函数,推导了包含这种函数关系的本构矩阵。另外在温度场分析中,考虑了塑性功和摩擦功转化的热量。文后给出的算例表明该方法可以很好地模拟热加工过程。  相似文献   

6.
Summary  A finite element technique is presented for the analysis of one-dimensional torsional plastic waves in a thin-walled tube. Three different nonlinear consitutive relations deduced from elementary mechanical models are used to describe the shear stress–strain characteristics of the tube material at high rates of strain. The resulting incremental equations of torsional motion for the tube are solved by applying a direct numerical integration technique in conjunction with the constitutive relations. The finite element solutions for torsional plastic waves in a long copper tube subjected to an imposed angular velocity at one end are given, and a comparison with available experimental results to assess the accuracy of the constitutive relations considered is conducted. It is demonstrated that the strain-rate dependent solutions show a better agreement with the experimental results than the strain-rate independent solutions. The limitations of the constitutive equations are discussed, and some modifications are suggested. Received 9 February 1999; accepted for publication 28 March 2000  相似文献   

7.
The analytical properties of the constitutive equations in plasticity with a nonassociated flow rule are investigated. Under the assumption of small deformations the directional stiffness (and compliance) rule is considered and the relevant spectral properties of the tangent stiffness tensor are assessed. It is shown that the directional stiffness may be larger than the elastic. It may also be negative in the case of a formally perfectly plastic material and so the nonassociative flow rule represents (spurious) softening in terms of an associated flow rule. The issue of uniqueness at finite strains is briefly addressed, whereby use is made of the tangent stiffness tensor relating the velocity gradient to the first Piola-Kirchhoff stress rate. The relevant spectral properties, which generalise those from the small deformation case, are found explicit. A sufficient condition for uniqueness is given in terms of a critical (upper bound) value of the hardening modulus.  相似文献   

8.
Constitutive equations for hot-working of metals   总被引:1,自引:0,他引:1  
Elevated temperature deformation processing - “hot-working,” is an important step during the manufacturing of most metal products. Central to any successful analysis of a hot-working process is the use of appropriate rate and temperature-dependent constitutive equations for large, interrupted inelastic deformations, which can faithfully account for strain-hardening, the restoration processes of recovery and recrystallization and strain rate and temperature history effects. In this paper we develop a set of phenomenological, internal variable type constitutive equations describing the elevated temperature deformation of metals. We use a scalar and a symmetric, traceless, second-order tensor as internal variables which, in an average sense, represent an isotropic and an anisotropic resistance to plastic flow offered by the internal state of the material. In this theory, we consider small elastic stretches but large plastic deformations (within the limits of texturing) of isotropic materials. Special cases (within the constitutive framework developed here) which should be suitable for analyzing hot-working processes are indicated.  相似文献   

9.
Within the framework of the model of large deformations, the deformation of a material exhibiting elastic, viscous, and plastic properties and placed between two rigid cylinders is investigated when turning the internal cylinder. The accumulation of irreversible deformations prior to the onset of plastic flow and upon its termination is associated with creep. Reversible and irreversible deformations according to the model in question are determined by differential transport equations. To calculate the displacement fields, stresses, and reversible, irreversible, and complete deformations, a system of partial differential equations is obtained, for which a finite-difference scheme is constructed.  相似文献   

10.
For modeling the constitutive properties of viscoelastic solids in the context of small deformations, the so-called three-parameter solid is often used. The differential equation governing the model response may be derived in a thermodynamically consistent way considering linear spring-dashpot elements. The main problem in generalizing constitutive models from small to finite deformations is to extend the theory in a thermodynamically consistent way, so that the second law of thermodynamics remains satisfied in every admissible process. This paper concerns with the formulation and constitutive equations of finite strain viscoelastic material using multiplicative decomposition in a thermodynamically consistent manner. Based on the proposed constitutive equations, a finite element (FE) procedure is developed and implemented in an FE code. Subsequently, the code is used to predict the response of elastomer bushings. The finite element analysis predicts displacements and rotations at the relaxed state reasonably well. The response to coupled radial and torsional deformations is also simulated.  相似文献   

11.
In this paper a finite deformation constitutive model for rigid plastic hardening materials based on the logarithmic strain tensor is introduced. The flow rule of this constitutive model relates the corotational rate of the logarithmic strain tensor to the difference of the deviatoric Cauchy stress and the back stress tensors. The evolution equation for the kinematic hardening of this model relates the corotational rate of the back stress tensor to the corotational rate of the logarithmic strain tensor. Using Jaumann, Green–Naghdi, Eulerian and logarithmic corotational rates in the proposed constitutive model, stress–strain responses and subsequent yield surfaces are determined for rigid plastic kinematic and isotropic hardening materials in the simple shear problem at finite deformations.  相似文献   

12.
各向同性率无关材料本构关系的不变性表示   总被引:2,自引:1,他引:1  
陈明祥 《力学学报》2008,40(5):629-635
在内变量理论的框架下,针对各向同性率无关材料,使用张量函数表示理论建立了塑性应变全量及增量本构关系的最一般的张量不变性表示. 它们均由3个完备不可约的基张量组合构成,这3个基张量分别是应力的零次幂、一次幂和二次幂. 因此得出,塑性应变、塑性应变增量与应力三者共主轴. 通过对基张量的正交化,给出了本构关系式在主应力空间中的几何解释. 进一步,全量(或增量)本构关系中3个组合因子被表达为应力、塑性应变(或塑性应变增量)的不变量的函数. 当塑性应变(或塑性应变增量)的3个不变量之间满足一定关系时,所给出的本构关系将退化为经典的形变理论(或塑性势理论).最后,还讨论它与奇异屈服面理论的关系,当满足一定条件时,两者是一致的.   相似文献   

13.
A numerical scheme for the transient solution of a generalized version of the Poisson–Nernst–Planck (PNP) equations is presented. The finite element method is used to establish the coupled non-linear matrix system of equations capable of solving the present problem iteratively. The PNP equations represent a set of diffusion equations for charged species, i.e. dissolved ions, present in the pore solution of a rigid porous material in which the surface charge can be assumed neglectable. These equations are coupled to the ‘internally’ induced electrical field and to the velocity field of the fluid. The Nernst–Planck equations describing the diffusion of the ionic species and Gauss’ law in use are, however, coupled in both directions. The governing set of equations is derived from a simplified version of the so-called hybrid mixture theory (HMT). The simplifications used here mainly concerns ignoring the deformation and stresses in the porous material in which the ionic diffusion occurs. The HMT is a special version of the more ‘classical’ continuum mixture theories in the sense that it works with averaged equations at macroscale and that it includes the volume fractions of phases in its structure. The background to the PNP equations can by the HMT approach be described by using the postulates of mass conservation of constituents together with Gauss’ law used together with consistent constitutive laws. The HMT theory includes the constituent forms of the quasistatic version of Maxwell’s equations making it suitable for analyses of the kind addressed in this work. Within the framework of HTM, constitutive equations have been derived using the postulate of entropy inequality together with the technique of identifying properties by Lagrange multipliers. These results will be used in obtaining a closed set of equations for the present problem.  相似文献   

14.
针对大型周边桁架式索网天线由拉索拉压模量不同引起的本构非线性和结构大变形引起的几何非线性问题,给出了基于参变量变分原理的几何非线性有限元方法. 首先针对含预应力索单元拉压模量不同分段描述的本构关系,通过引入参变量,导出了基于参变量及其互补方程的统一描述形式,避免了传统算法需要根据当前变形对索单元张紧/松弛状态的预测,提高了算法收敛性. 然后利用拉格朗日应变描述索网天线结构大变形问题,结合几何非线性有限元法,建立了基于参变量的非线性平衡方程和线性互补方程;并给出了牛顿-拉斐逊迭代法与莱姆算法相结合的求解算法. 数值算例验证了本文提出的算法比传统算法具有更稳定的收敛性和更高的求解精度,特别适合于大型索网天线结构的高精度变形分析和预测.   相似文献   

15.
针对大型周边桁架式索网天线由拉索拉压模量不同引起的本构非线性和结构大变形引起的几何非线性问题,给出了基于参变量变分原理的几何非线性有限元方法. 首先针对含预应力索单元拉压模量不同分段描述的本构关系,通过引入参变量,导出了基于参变量及其互补方程的统一描述形式,避免了传统算法需要根据当前变形对索单元张紧/松弛状态的预测,提高了算法收敛性. 然后利用拉格朗日应变描述索网天线结构大变形问题,结合几何非线性有限元法,建立了基于参变量的非线性平衡方程和线性互补方程;并给出了牛顿-拉斐逊迭代法与莱姆算法相结合的求解算法. 数值算例验证了本文提出的算法比传统算法具有更稳定的收敛性和更高的求解精度,特别适合于大型索网天线结构的高精度变形分析和预测.  相似文献   

16.
Three small deformation plasticity models taking into account isotropic damage effects are presented and discussed. The models are formulated in the context of irreversible thermody-namics and the internal state variable theory. They exhibit nonlinear isotropic and nonlinear kinematic hardening. The aim of the paper is first to give a comparative study of the three models with reference to homogeneous and inhomogeneous deformations by using a general damage law. Secondly, and this is the main objective of the paper, we generalize the constitutive models to finite deformations by applying a thermodynamical framework based on the Mandel stress tensor. The responses of the obtained finite deformation models are then discussed for loading processes with homogeneous deformations.  相似文献   

17.
Thermodynamic and statistical methods for setting up the constitutive equations describing the viscoelastoplastic deformation and hardening of materials are proposed. The thermodynamic method is based on the law of conservation of energy, the equations of entropy balance and entropy production in the presence of self-balanced internal microstresses characterized by conjugate hardening parameters. The general constitutive equations include the relationships between the thermodynamic flows and forces, which follow from nonnegative entropy production and satisfy the generalized Onsager’s principle, and the thermoelastic relations and the expression for entropy, which follow from the law of conservation of energy. Specific constitutive equations are derived by representing the dissipation rate as a sum of two terms responsible for kinematic and isotropic hardening and approximated by power and hyperbolic-sinus functions. The constitutive equations describing viscoelastoplastic deformation and hardening are derived based on stochastic microstructural concepts and on the linear thermoelasticity model and nonlinear Maxwell model for the spherical and deviatoric components of microstresses and microstrains, respectively. The problem of determining the effective properties and stress-strain state of a three-component material found using the Voigt-Reuss scheme leads to constitutive equations similar in form to those produced by the thermodynamic method __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 2, pp. 3–18, February 2008.  相似文献   

18.
The rate-type constitutive relations of rate-independent metals with isotropic or kinematic hardening at finite elastic–plastic deformations were presented through a phenomenological approach. This approach includes the decomposition of finite deformation into elastic and plastic parts, which is different from both the elastic–plastic additive decomposition of deformation rate and Lee’s elastic–plastic multiplicative decomposition of deformation gradient. The objectivity of the constitutive relations was dealt with in integrating the constitutive equations. A new objective derivative of back stress was proposed for kinematic hardening. In addition, the loading criteria were discussed. Finally, the stress for simple shear elastic–plastic deformation was worked out.  相似文献   

19.
The finite volume discretization of nonlinear elasticity equations seems to be a promising alternative to the traditional finite element discretization as mentioned by Lee et al. [Computers and Structures (2013)]. In this work, we propose to solve the elastic response of a solid material by using a cell‐centered finite volume Lagrangian scheme in the current configuration. The hyperelastic approach is chosen for representing elastic isotropic materials. In this way, the constitutive law is based on the principle of frame indifference and thermodynamic consistency, which are imposed by mean of the Coleman–Noll procedure. It results in defining the Cauchy stress tensor as the derivative of the free energy with respect to the left Cauchy–Green tensor. Moreover, the materials being isotropic, the free‐energy is function of the left Cauchy–Green tensor invariants, which enable the use of the neo‐Hookean model. The hyperelasticity system is discretized using the cell‐centered Lagrangian scheme from the work of Maire et al. [J. Comput. Phys. (2009)]. The 3D scheme is first order in space and time and is assessed against three test cases with both infinitesimal displacements and large deformations to show the good accordance between the numerical solutions and the analytic ones. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
IntroductionTheporousmediamodelsdeducedfrommixturetheoryareattractingattentionofmoreandmoreresearchersbecauseitisbasedontheframeofcontinuummechanics[1]andweresuccessfullyusedtodepictthemechanicalbehaviorsofsoilsandbiologicalsofttissues[2 ,3].Withthistypeo…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号