首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A non-linear finite element static analysis for flexible risers with large displacements is presented using a four-node pipe elbow element with 24 degrees of freedom. A pipe–soil interaction model is used to identify seabed boundary condition. The effects of buoyancy force as well as steady-state current loading are considered in the finite element solution for riser structures response. In fact considering buoyancy force among with current loading and seabed interaction boundary condition in this paper leads to a particular formulation. The resulting formulation has been implemented in a finite element code which is subsequently used to model and analyze some typical riser configurations. The results of some sample solutions are given to illustrate the accuracy and capability of the formulation.  相似文献   

2.
In this paper, the transient response of an infinite reservoir is analyzed using the dual-reciprocity boundary element method. A vertical and an inclined-face rigid dam are analyzed under a transient loading. Sharan-type boundary-condition transmission is implemented in the formulation. The results are compared with the exact solution and those obtained by using the finite element method. It is seen that the application of the dual-reciprocity boundary element method is simpler and the results are in very good agreement with the exact solution and those obtained by using the finite element method.  相似文献   

3.
A two-dimensional numerical procedure is presented to analyse the transient response of saturated porous elastic soil layer under cyclic loading. The procedure is based on the element-free Galerkin method and incorporated into the periodic conditions (temporal and spatial periodicity). Its shape function is constructed by moving least-square approximants, essential boundary conditions are implemented through Lagrange multipliers and the periodic conditions are implemented through a revised variational formulation. Time domain is discretized through the Crank–Nicolson scheme. Analytical solutions are developed to assess the effectiveness and accuracy of the current procedure in one and two dimensions. For only temporal periodic problems, a one-dimensional transient problem of finite thickness soil layer is analysed for sinusoidal surface loading. For both temporal and spatial periodic problems, a typical two-dimensional wave-induced transient problem with the seabed of finite thickness is analysed. Finally, a moving boundary problem is analysed. It is found that the current procedure is simple, efficient and accurate in predicting the response of soil layer under cyclic loading.  相似文献   

4.
A strategy for the mixed-dimensional coupling of finite shell elements and 3D boundary elements is presented. The stiffness formulation for the boundary element domain is generated by the 3D symmetric Galerkin boundary element method and thus can be assembled to the global finite element formulation. Based on the equality of work at the coupling interface, coupling equations in an integral sense are derived for curved coupling interfaces and formulated as multipoint constraints in terms of kinematic quantities. Several examples show the highly accurate results compared to a strict kinematic coupling technique.  相似文献   

5.
A new boundary element procedure is developed for the solution of the streamfunction–vorticity formulation of the Navier–Stokes equations in two dimensions. The differential equations are stated in their transient version and then discretized via finite differences with respect to time. In this discretization, the non-linear inertial terms are evaluated in a previous time step, thus making the scheme explicit with respect to them. In the resulting discretized equations, fundamental solutions that take into account the coupling between the equations are developed by treating the non-linear terms as in homogeneities. The resulting boundary integral equations are solved by the regular boundary element method, in which the singular points are placed outside the solution domain.  相似文献   

6.
The focus of the present paper is the experimental investigation, the constitutive representation and the numerical simulation of the amplitude dependence of filler-reinforced elastomers. A standard way to investigate the dynamic properties of viscoelastic materials is via the dynamic modulus which is obtained from stress signals due to harmonic strain excitations. Based on comprehensive experimental data, an amplitude-dependent constitutive model of finite viscoelasticity is developed. The model is based on a modified Maxwell chain with process-dependent viscosities which depend on additional internal state variables. The evaluation of this thermodynamically consistent model is possible in both the time domain, via stress-time signals, and in the frequency domain, via the dynamic modulus. This property is very profitable for the parameter identification process. The implementation of the constitutive model into the commercial finite element code ANSYS with the user-programmable feature (UPF) USERMAT for large deformations in updated Lagrange formulation is presented. This implementation allows simulating the time-dependent behaviour of rubber components under arbitrary transient loading histories. Due to physical and geometrical nonlinearities, these simulations are not possible in the frequency domain. But, transient FEM computations of large loading histories are sometimes not possible in an acceptable time. In the context of the parameter identification the fundamental ideas are presented, how this problem has been solved. Transient FEM simulations of real rubber components are also shown to visualize the properties of the model in the context of the transient material behaviour.  相似文献   

7.
桩-土接触效应及对桥梁结构地震反应的影响   总被引:4,自引:0,他引:4  
目前有关涉及桥梁桩基础地震反应的研究大多是基于桩与桩侧土体之间无相对滑动、位移保持协调的假定。本文针对地震作用下桥梁桩基础的接触面效应及其对结构地震反应的影响问题,以某桥梁工程为背景,通过在桩-土交界面处设置接触单元来模拟桩-土间的接触非线性,建立了土-桩-桥梁结构相互作用体系的三维分析模型。利用这一模型,分析了地震作用下桩-土交界面处的动力反应形态,探讨了桩-土间的接触非线性及其对桥梁结构地震反应的影响。初步分析结果表明:在强震作用下,桩-土间会产生较强的接触非线性,在本文模型中,这种非线性主要表现为桩-土交界面处的滑移;考虑桩-土间的接触面效应将使结构的位移反应结果较基于桩-土间位移协调的情形有所增大。  相似文献   

8.
振动台模型试验中地基土域的数值模拟   总被引:5,自引:0,他引:5  
针对土-结构动力相互作用振动台模型试验中有限地基土域的模拟问题,本文分别采用有限元法和边界元法对地基土模型的侧向人工边界和底部人工边界的合理位置问题进行了计算分析。文中首先采用三维有限元方法,探讨了地基土侧向垂直人工边界不同位置对群桩基础和箱形基础地震反应的影响,提出了侧向人工边界合理位置的具体建议;然后利用层土动力Green函数建立边界元模型,通过对埋入式条形基础的动力反应分析,探讨了底部水平人工边界的合理位置,提出了相应的建议。  相似文献   

9.
Finite element analysis of wave propagation in fluid-saturated porous media   总被引:2,自引:0,他引:2  
Thedynamictransientresponseanalysisofporousmediaplaysaveryimportantroleinalotofengineeringpracticessuchastransientconsolidation,noisecontrol,earthquakeengineeringandbioengineering.Biot[1]originallydiscussedthewavepropagationprobleminfluid_saturatedpo…  相似文献   

10.
Hydrogels are capable of coupled mass transport and large deformation in response to external stimuli. In this paper, a nonlinear, transient finite element formulation is presented for initial boundary value problems associated with swelling and deformation of hydrogels, based on a nonlinear continuum theory that is consistent with classical theory of linear poroelasticity. A mixed finite element method is implemented with implicit time integration. The incompressible or nearly incompressible behavior at the initial stage imposes a constraint to the finite element discretization in order to satisfy the Ladyzhenskaya–Babuska–Brezzi (LBB) condition for stability of the mixed method, similar to linear poroelasticity as well as incompressible elasticity and Stokes flow; failure to choose an appropriate discretization would result in locking and numerical oscillations in transient analysis. To demonstrate the numerical method, two problems of practical interests are considered: constrained swelling and flat-punch indentation of hydrogel layers. Constrained swelling may lead to instantaneous surface instability for a soft hydrogel in a good solvent, which can be regulated by assuming a stiff surface layer. Indentation relaxation of hydrogels is simulated beyond the linear regime under plane strain conditions, in comparison with two elastic limits for the instantaneous and equilibrium states. The effects of Poisson’s ratio and loading rate are discussed. It is concluded that the present finite element method is robust and can be extended to study other transient phenomena in hydrogels.  相似文献   

11.
A set of non-homogeneous radiation and outflow boundary conditions which automatically generate prescribed incoming acoustic or vorticity waves and, at the same time, are almost transparent to outgoing sound waves produced internally in a finite computation domain is proposed. This type of boundary condition is needed for the numerical solution of many exterior aeroacoustics problems. In computational aeroacoustics, the computation scheme must be as non-dispersive and non-dissipative as possible. It must also support waves with wave speeds which are nearly the same as those of the original linearized Euler equations. To meet these requirements, a high-order/large-stencil scheme is often necessary. The proposed non-homogeneous radiation and outflow boundary conditions are designed primarily for use in conjunction with such high-order/large-stencil finite difference schemes. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, the radial integration method is used to obtain a boundary element formulation without any domain integral for general anisotropic plate bending problems. Two integral equations are used and the unknown variables are assumed to be constant along each boundary element. The domain integral which arises from a transversely applied load is exactly transformed into a boundary integral by a radial integration technique. Uniformly and linearly distributed loads are considered. Several computational examples concerning orthotropic and general anisotropic plate bending problems are presented. The results show good agreement with analytical and finite element results available in the literature.  相似文献   

13.
In this contribution a micromechanically motivated model for rate-dependent switching effects in piezoelectric materials is developed. The proposed framework is embedded into a three-dimensional finite element setting whereby each element is assumed to represent an individual grain. Related dipole (polarization) directions are thereby initially randomly oriented at the element level to realistically capture the originally un-poled state of grains in the bulk ceramics. The onset of domain switching processes is based on a representative energy criterion and combined with a linear kinetics theory accounting for time-dependent propagation of domain walls during switching processes. In addition, grain boundary effects are incorporated by making use of a macromechanically motivated probabilistic approach. Standard volume-averaging techniques with respect to the response on individual grains in the bulk ceramics are later on applied to obtain representative hysteresis and butterfly curves under macroscopically uniaxial loading conditions at different loading frequencies. It turns out that the simulations based on the developed finite element formulation nicely match experimental data reported in the literature.  相似文献   

14.
The Non-uniform rational B-spline(NURBS)enhanced scaled boundary finite element method in combination with the modified precise integration method is proposed for the transient heat conduction problems in this paper.The scaled boundary finite element method is a semi-analytical technique,which weakens the governing differential equations along the circumferential direction and solves those analytically in the radial direction.In this method,only the boundary is discretized in the finite element sense leading to a reduction of the spatial dimension by one with no fundamental solution required.Nevertheless,in case of the complex geometry,a huge number of elements are generally required to properly approximate the exact shape of the domain and distorted meshes are often unavoidable in the conventional finite element approach,which leads to huge computational efforts and loss of accuracy.NURBS are the most popular mathematical tool in CAD industry due to its flexibility to fit any free-form shape.In the proposed methodology,the arbitrary curved boundary of problem domain is exactly represented with NURBS basis functions,while the straight part of the boundary is discretized by the conventional Lagrange shape functions.Both the concepts of isogeometric analysis and scaled boundary finite element method are combined to form the governing equations of transient heat conduction analysis and the solution is obtained using the modified precise integration method.The stiffness matrix is obtained from a standard quadratic eigenvalue problem and the mass matrix is determined from the low-frequency expansion.Finally the governing equations become a system of first-order ordinary differential equations and the time domain response is solved numerically by the modified precise integration method.The accuracy and stability of the proposed method to deal with the transient heat conduction problems are demonstrated by numerical examples.  相似文献   

15.
The formulation and implementation of a singular finite element for analyzing homogeneous anistropic materials is presented in this paper. Lekhnitskii's stress function method is used to formulate the boundary value problem with the stress function expressed as a Laurent series. The development of the element stiffness matrix and the method of integrating the element to conventional displacement based finite element programs is shown. The stiffness matrix generation is based on a least squates collocation technique to satisfy displacement continuity boundary conditions at the element interface. Implementation of the element is demonstrated for cracked anisotropic materials subjected to inplane loading. Center cracked, on and off-axis coupons under tensile loading are analyzed using the element. It is shown that the stress distributions and intensity factors compare well with those obtained using other methods.  相似文献   

16.
真实的地基土体-隧道系统中土体及结构性质往往沿线路纵向变化.为考虑土体与结构沿纵向的变化特性,提出了一种非饱和土-结构系统动力响应分析的多耦合周期性有限元法.首先基于非饱和土的实用波动方程,采用Galerkin法推导了单节点5个自由度的非饱和土ub-pl-pg格式有限元表达式,相比于单节点9个自由度的ub-v-w格式有...  相似文献   

17.
刘杰  何杰  张可能 《力学学报》2003,11(3):244-249
对桩及承台采用线弹性有限元模型,对承台下桩周土采用弹塑性有限元模型,对群桩以外的土体采用线弹性无限元模型,在桩土接触面上设置接触面单元,利用三维弹塑性有限元对桩%D土%D承台相互作用进行了分析。得出了如下结论 :承台下桩顶反力总体表现出角桩最大,边桩次之,中桩最小的分布规律,随着作用在承台上的荷载增大,桩顶反力趋于均匀分布,承台下桩侧摩阻力是由桩端向桩顶逐渐发展的,承台对桩上部侧摩擦阻力存在“削弱作用”。为了验证本文方法的可行性,对承台下有九桩的情况进行了静载试验,将试验结果与本文计算结果进行了比较。  相似文献   

18.
The boundary element method (BEM) is implemented for the simulation of three-dimensional transient flows of typical relevance to mixing. Creeping Newtonian and viscoelastic fluids of the Maxwell type are examined. A boundary-only formulation in the time domain is proposed for linear viscoelastic flows. Special emphasis is placed on cavity flows involving simple- and multiple-connected moving domains. The BEM becomes particularly suited in multiple-connected flows, where part of the boundary (stirrer or rotor) is moving, and the remaining outer part (cavity or barrel) is at rest. In this case, conventional methods, such as the finite element method (FEM), generally require remeshing or mesh refinement of the three-dimensional fluid volume as the flow evolves and the domain of computation changes with time. The BEM is shown to be much easier to implement since the kinematics of the elements bounding the fluid is known (imposed). It is found that, for simple cavity flow induced by a rotating vane at constant angular velocity, the tractions at the vane tip and cavity face exhibit non-linear periodic dynamical behavior with time for fluids obeying linear constitutive equations. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
A dynamic, shear deformation theory of a doubly curved shell is used to develop a finite element for geometrically non-linear (in the von Karman sense) transient analysis of laminated composite shells. The element is employed to determine the transient response of spherical and cylindrical shells with various boundary conditions and loading. The effect of shear deformation and geometric non-linearity on the transient response is investigated. The numerical results presented here for transient analysis of laminated composite shells should serve as references for future investigations.  相似文献   

20.
The quasilinear form of Richards equation for one-dimensional unsaturated flow in soils can be readily solved for a wide variety of conditions. However, it cannot explain saturated/unsaturated flow and the constant diffusivity assumption, used to linearise the transient quasilinear equation, can introduce significant error. This paper presents a quasi-analytical solution to transient saturated/unsaturated flow based on the quasilinear equation, with saturated flow explained by a transformed Darcy's equation. The procedure presented is based on the modified finite analytic method. With this approach, the problem domain is divided into elements, with the element equations being solutions to a constant coefficient form of the governing partial differential equation. While the element equations are based on a constant diffusivity assumption, transient diffusivity behaviour is incorporated by time stepping. Profile heterogeneity can be incorporated into the procedure by allowing flow properties to vary from element to element. Two procedures are presented for the temporal solution; a Laplace transform procedure and a finite difference scheme. An advantage of the Laplace transform procedure is the ability to incorporate transient boundary condition behaviour directly into the analytical solutions. The scheme is shown to work well for two different flow problems, for three soil types. The technique presented can yield results of high accuracy if the spatial discretisation is sufficient, or alternatively can produce approximate solutions with low computational overheads by using large sized elements. Error was shown to be stable, linearly related to element size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号