首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
There is a need to radically increase mobility of terrain vehicles through new modalities of vehicle locomotion, i.e., by establishing a new technological paradigm in vehicle dynamics and mobility. The new paradigm greatly applies to military vehicles for the radical improvement of tactical and operational mobility. This article presents a new technological paradigm of agile tire slippage dynamics that is studied as an extremely fast and exact response of the tire–soil couple to (i) the tire dynamic loading, (ii) transient changes of gripping and rolling resistance conditions on uniform stochastic terrains and (iii) rapid transient changes from one uniform terrain to a different uniform terrain. Tire longitudinal relaxation lengths are analyzed to characterize the longitudinal relaxation time constants. A set of agile characteristics is also considered to analyze agile tire slippage dynamics within a time interval that is close to the tire longitudinal relaxation time constants. The presented paradigm of agile tire slippage dynamics lays out a foundation to radically enhance vehicle terrain mobility by controlling the tire slippage in its transient phases to prevent the immobilization of a vehicle. Control development basis and requirements for implementing an agile tire slippage control are also analyzed and considered.  相似文献   

2.
Hydroplaning characteristics of patterned tire on wet road are investigated by making use of finite volume and finite element methods. A detailed 3-D patterned tire model is constructed by our in-house modeling program and the rainwater flow is considered as incompressible and inviscid. Meanwhile, the fluid–structure interaction between the highly complicated tire tread and the rainwater flow is effectively treated by the general coupling method. Through the numerical experiments, the rainwater flow drained through tire grooves, hydrodynamic pressure and contact force are investigated and compared with those of the three-grooved tire model.  相似文献   

3.
Off-road operations are critical in many fields and the complexity of the tire-terrain interaction deeply affects vehicle performance. In this paper, a semi-empirical off-road tire model is discussed. The efforts of several researchers are brought together into a single model able to predict the main features of a tire operating in off-road scenarios by computing drawbar pull, driving torque, lateral force, slip-sinkage phenomenon and the multi-pass behavior. The approach is principally based on works by Wong, Reece, Chan, and Sandu and it is extended in order to catch into a single model the fundamental features of a tire running on soft soil. A thorough discussion of the methodology is conducted in order to highlight strengths and weakness of different implementations. The study considers rigid wheels and flexible tires and analyzes the longitudinal and the lateral dynamics. Being computationally inexpensive a semi-empirical model is attractive for real time vehicle dynamics simulations. To the best knowledge of the authors, current vehicle dynamics codes poorly account for off-road operations where tire-terrain interaction dominates vehicle performance. In this paper two soils are considered: a loose sandy terrain and a firmer loam. Results show that the model realistically predicts longitudinal and lateral forces providing at the same time good estimates of the slip-sinkage behavior and tire parameters sensitivity.  相似文献   

4.
This paper presents a novel modelling technique to compute the interaction between an 8x4 off-road truck and gravelly soil (sand with gravel soil). The off-road truck tire size 315/80R22.5 is modelled using the Finite Element Analysis (FEA) technique and validated using manufacturer-provided data in static and dynamic responses. The gravelly soil is modelled using Smoothed-Particle Hydrodynamics (SPH) technique and calibrated against physical measurements using pressure-sinkage and direct shear-strength tests. The tire-gravelly soil interaction is captured using the node symmetric node to segment with edge treatment algorithm deployed for interaction between FEA and SPH elements. The model setup consists of four tires presenting the four axles of the truck, the first tire is a free-rolling steering tire, the second and third tires are driven tires and the fourth tire is a free-rolling push tire. The truck tires-gravelly soil interaction is computed and validated against physical measurements performed in Göteborg, Sweden. The effect of gravelly soil compaction and truck loading on the tire performance is discussed and investigated.  相似文献   

5.
The next generation of forestry machines must be developed to be gentler to soil and to the root mat than present machines, especially in thinning operations. The bearing capacity of the soil is a key property for determining the terrain trafficability and machine mobility. This asks for better and more general terramechanics models that can be used to predict the interaction between different machine concepts and real and complex forest soil.This paper presents results from terramechanics experiments of rooted soil with a new and small-scale testing device. The force–deflection results are analyzed and compared with analytical root reinforcement models found in literature. The presented study indicates that rooted soil properties obtained with the new laboratory test device can be used to create an augmented soil model that can be used to predict the bearing capacity of rooted soil and also to be used in dynamic machine–soil interaction simulations.  相似文献   

6.
Soil compaction involves a reduction in volume of the soil mass instead of settlement, which has been considered as one of the most important methods to increase geomaterials' strength in geotechnical engineering practice. This paper presents a numerical model to simulate soil compaction using the finite-element method with finite deformation. The fundamental formulations for soil compaction are introduced first. Then the model is employed to simulate the compaction process and predict spatial density, in which the soil is modeled as elastoplastic material. The Drucker–Prager/Cap model is integrated in the large-deformation finite-element code and used to model the gradual compaction process of soil. Representative simulations of practical applications in geotechnical/pavement engineering are provided to demonstrate the feasibility of predicting soil compaction density using the proposed large-deformation finite-element model.  相似文献   

7.
Assessing the mobility of off-road vehicles is a complex task that most often falls back on semi-empirical approaches to quantifying the vehicle–terrain interaction. Herein, we concentrate on physics-based methodologies for wheeled vehicle mobility that factor in both tire flexibility and terrain deformation within a fully three-dimensional multibody system approach. We represent the tire based on the absolute nodal coordinate formulation (ANCF), a nonlinear finite element approach that captures multi-layered, orthotropic shell elements constrained to the wheel rim. The soil is modeled as a collection of discrete elements that interact through contact, friction, and cohesive forces. The resulting vehicle/tire/terrain interaction problem has several millions of degrees of freedom and is solved in an explicit co-simulation framework, built upon and now available in the open-source multi-physics package Chrono. The co-simulation infrastructure is developed using a Message Passing Interface (MPI) layer for inter-system communication and synchronization, with additional parallelism leveraged through a shared-memory paradigm. The formulation and software framework presented in this investigation are proposed for the analysis of the dynamics of off-road wheeled vehicle mobility. Its application is demonstrated by numerical sensitivity studies on available drawbar pull, terrain resistance, and sinkage with respect to parameters such as tire inflation pressure and soil cohesion. The influence of a rigid tire assumption on mobility is also discussed.  相似文献   

8.
9.
In the present study, the effect of vertical load, tire inflation pressure and soil moisture content on power loss in tire under controlled soil bin conditions were investigated. Also a finite element model of tire-soil interaction in order to achieve a suitable model for predicting power loss in tire was created. Increasing the vertical load on the tire had a noteworthy impact on increasing the tire contact volume with the soil, reducing the percentage of slip, and increasing the rolling resistance; although, reducing the load on the tire had the opposite effect. At a constant inflation pressure, by increasing the vertical load on the tire, the amount of power loss due to the rolling resistance and the total power loss in the tire increased. Increase in soil moisture content increased the power loss caused by slip. Increasing the inflation pressure at a constant vertical load, also increasing the soil moisture content, led to an increase in the power loss caused by rolling resistance, and increase total power loss. The obtained error for estimating power loss of rolling resistance and total power loss was satisfactory and confirmed the acceptability of the model for power loss estimation.  相似文献   

10.
The US army along with NATO member and partner nations’ militaries need an accurate software tool for predicting ground vehicle mobility (such as speed-made-good and fuel-consumption) on world-wide terrains where military vehicles may be required to operate. Currently, the NATO Reference Mobility Model (NRMM) is the only NATO recognized tool for assessing ground vehicle mobility. NRMM was developed from the 1960s to the 1980s and relies on steady-state empirical formulas which may not be accurate for new military ground vehicles. A NATO research task group (RTG-248) was established from 2016 to 2018 to develop the NG-NRMM (next-generation NRMM) software tool requirements and an NG-NRMM prototype which uses high-fidelity “simple” or “complex” terramechanics models for the terrain/soil along with modern 3D multibody dynamics software tools for modeling the vehicle. NG-NRMM Complex Terramechanics (CT) models are those that utilize full 3D soil models capable of predicting the 3D soil reaction forces on the vehicle surfaces (including tires, tracks, legs, and under body) and the 3D flow and deformation of the soil including both elastic and plastic deformation under any 3D loading condition. In Part 1 of this paper, an overview of the full spectrum of terramechanics models from the highest fidelity to the lowest fidelity is presented along with a literature review of CT ground vehicle mobility models.  相似文献   

11.
The traveling performance of off-the-road vehicles, such as construction machinery and exploration rovers, significantly depends on the interaction between the ground and the traveling mechanism, since inelastic ground deformation and frictional sliding phenomena are induced by the vehicle’s movement. In general, a tread surface causes anisotropic frictional interaction behavior on a macroscopic scale. In this study, an acceptable frictional interaction model was implemented to finite element method to rationally examine the anisotropic frictional interaction behavior between the tire and the ground. Finite element analysis of the single tire traveling performance, including certain slippage and side slip (skid), was then carried out to examine the effect of the anisotropic frictional interaction on the numerical results for the drawbar-pull and side force.  相似文献   

12.
Significant challenges exist in the prediction of interaction forces generated from the interface between pneumatic tires and snow-covered terrains due to the highly non-linear nature of the properties of flexible tires, deformable snow cover and the contact mechanics at the interface of tire and snow. Operational conditions of tire-snow interaction are affected by many factors, especially interfacial slips, including longitudinal slip during braking or driving, lateral slip (slip angle) due to turning, and combined slip (longitudinal and lateral slips) due to brake-and-turn and drive-and-turn maneuvers, normal load applied on the wheel, friction coefficient at the interface and snow depth. This paper presents comprehensive three-dimensional finite element simulations of tire-snow interaction for low-strength snow under the full-range of controlled longitudinal and lateral slips for three vertical loads to gain significant mechanistic insight. The pneumatic tire was modeled using elastic, viscoelastic and hyperelastic material models; the snow was modeled using the modified Drucker-Prager Cap material model (MDPC). The traction, motion resistance, drawbar pull, tire sinkage, tire deflection, snow density, contact pressure and contact shear stresses were obtained as a function of longitudinal slip and lateral slip. Wheel states - braked, towed, driven, self-propelled, and driving - have been identified and serve as key classifiers of discernable patterns in tire-snow interaction such as zones of contact shear stresses. The predicted results can be applied to analytical deterministic and stochastic modeling of tire-snow interaction.  相似文献   

13.
Tire tractive performance, soil behavior under the traffic, and multi-pass effect are among the key topics in the research of vehicle off-road dynamics. As an extension of the study (He et al., 2019a), this paper documents the testing of a tire moving on soft soil in the traction mode or towing mode, with a single pass or multiple passes, and presents the testing results mainly from the aspects of tire tractive performance parameters, soil behavior parameters, and multi-pass effect on these parameters. The influence of tire inflation pressure, initial soil compaction, tire normal load, or the number of passes on the test data has been analyzed; for some of the tests, the analysis was completed statistically. A multi-pass effect phenomenon, different from any phenomenon recorded in the available existing literature, was discovered and related to the ripple formation and soil failure. The research results of this paper can be considered groundwork for tire off-road dynamics and the development of traction controllers for vehicles on soft soil.  相似文献   

14.
This paper focuses on predicting and analyzing the tire-moist terrain interaction. The moist terrain (sand) is modelled using Smoothed-Particle Hydrodynamics (SPH) technique. The SPH basic interpolation technique is described, and the necessary interpolation equations are implemented. The soil is modelled using the hydrodynamic elastic-plastic material, while the water is modelled using Murnaghan equation of state. The numerical interaction between both materials is defined using Darcy’s law. The soil moisturizing technique consists of layering water particles on top of sand particles and pressurizing the water into the sand. The moisturizing technique is examined using the direct shear-strength test, and validated against physical measurement carried out in a laboratory under similar soil conditions and bulk density. Finally, the results and the effect of moisture content on tire-moist terrain interaction are discussed and investigated using a previously modelled and validated off-road truck tire size 315/80R22.5.  相似文献   

15.
Agricultural tire deformation in the 2D case by finite element methods   总被引:1,自引:0,他引:1  
The mechanical characteristics of the rubber tire and the interaction between a tire and a rigid surface were investigated by a two-dimensional (2D) finite element (FE) model. The FE model consists of a rigid rim and a rigid contact surface which interact with the elastic tire. Four distinct sets of elastic parameters are used to represent beads, sidewall, tread and lugs. Several sets of tire loads and inflation pressures were applied to the FE model as boundary conditions, together with various displacements and friction conditions. The deformation of the tire profile, the tire displacements in the vertical and lateral directions, the normal contact pressures, the frictional forces and the stress distribution of the tire components were investigated by the 2D FE model under the above boundary conditions. The calculated tire deflections were compared with the measured data. The results show a good fit between calculated and measured data, especially at high load and inflation pressure. The comparison shows that the FE analysis is suitable to predict aspects of the tire performance like its deflection and interactions with the contact surface. Compared with the experimental methods, the FE methods show many advantages in the prediction of tire deformation, contact pressure and stress distribution.  相似文献   

16.
《Journal of Terramechanics》2004,41(2-3):127-137
One of the fundamental problems in terramechanics is soil–tire system. Past achievements on this topic can be observed in various literatures. Fast development on CPU power of PC system enables us to apply numerical methods to this basic subject. Among others, finite element method (FEM) has been applied to simple problems of soil–tire system not only in 2D but also in 3D approach. However, it is noted that the current FEM technology cannot handle “singular” boundary conditions with sufficient accuracy of analysis. Typical example of this limitation can be seen in an application to traction tire–soil contact problems, where the contact point of tire lug tip behaves as the singular point of stress field. On the other hand, distinct or discrete element method (DEM) has in essence the capability of analyze microscopic deformation (or flow) of soil as many researchers have already been demonstrated. It is noted that DEM suffers large calculation time that is consumed not only at contact check between particulate elements but also at incremental time step. In our present study, we try to combine both merit of FEM and DEM together in order to analyze the soil–tire system interaction, where, for example, a tire and deep soil layer are modeled as FEM and soil surface layer as DEM. We propose simple algorithm of this FE–DE coupled method and sample program is developed that can solve some basic terramechanics problems in order to verify our idea. The obtained result shows qualitatively sufficient accuracy.  相似文献   

17.
A realistic prediction of the traction capacity of vehicles operating in off-road conditions must account for stochastic variations in the system itself, as well as in the operational environment. Moreover, for mobility studies of wheeled vehicles on deformable soil, the selection of the tire model used in the simulation influences the degree of confidence in the output. Since the same vehicle may carry various loads at different times, it is also of interest to analyze the impact of cargo weight on the vehicle’s traction.This study focuses on the development of an algorithm to calculate the tractive capacity of an off-road vehicle with stochastic vehicle parameters (such as suspension stiffness, suspension damping coefficient, tire stiffness, and tire inflation pressure), operating on soft soil with an uncertain level of moisture, and on a terrain topology that induces rapidly changing external excitations on the vehicle. The analysis of the vehicle–soil dynamics is performed for light cargo and heavy cargo scenarios. The algorithm relies on the comparison of the ground pressure and the calculated critical pressure to decide if the tire can be approximated as a rigid wheel or if it should be modeled as a flexible wheel. It also involves using previously-developed vehicle and stochastic terrain models, and computing the vehicle sinkage, resistance force, tractive force, drawbar pull, and tractive torque.The vehicle model used as a case study has seven degrees of freedom. Each of the four suspension systems is comprised of a nonlinear spring and a viscous (linear or magneto-rheological) damper. An off-road terrain profile is simulated as a 2-D random process using a polynomial chaos approach [Sandu C, Sandu A, Li L. Stochastic modeling of terrain profiles and soil parameters. SAE 2005 transactions. J Commer Vehicles 2005-01-3559]. The soil modeling is concerned with the efficient treatment of the impact of the moisture content on relationships critical in defining the mobility of an off-road vehicle (such as the pressure–sinkage [Sandu C et al., 2005-01-3559] and the shear stress–shear displacement relations). The uncertainties in vehicle parameters and in the terrain profile are propagated through the vehicle model, and the uncertainty in the output of the vehicle model is analyzed [Sandu A, Sandu C, Ahmadian M. Modeling multibody dynamic systems with uncertainties. Part I: theoretical and computational aspects, Multibody system dynamics. Publisher: Springer Netherlands; June 29, 2006. p. 1–23 (23), ISSN: 1384-5640 (Paper) 1573-272X (Online). doi:10.1007/s11044-006-9007-5; Sandu C, Sandu A, Ahmadian M. Modeling multibody dynamic systems with uncertainties. Part II: numerical applications. Multibody system dynamics, vol. 15, No. 3. Publisher: Springer Netherlands; 2006. p. 241–62 (22). ISSN: 1384-5640 (Paper) 1573-272X (Online). doi:10.1007/s11044-006-9008-4]. Such simulations can provide the basis for the study of ride performance, handling, and mobility of the vehicle in rough off-road conditions.  相似文献   

18.
地面力学及其在行星探测研究中的应用   总被引:9,自引:0,他引:9  
孙刚  高峰  李雯 《力学进展》2007,37(3):453-464
地面力学是研究越野行驶中机器与地面相互作用的一门力学学科,包括对机器通过性的预测和评价,行走机构的优化设计以及对地面可行驶性的预测判断等几个方面.首先简介地面力学的研究方法、试验仪器和设备以及主要的成果和结论,其中包括在这些方面的最新研究进展情况.之后重点介绍行星探测领域中所开展的地面力学研究,主要从行星探测器设计阶段对地面力学理论和方法的应用、行星模拟土壤研制和力学特性研究、行星就位土壤力学参数测量等几个方面进行了综述.最后对这一领域今后的研究方向进行了探讨.   相似文献   

19.
Both experience and research warn that heavily loaded wheels of agricultural transport vehicles and heavy machinery may cause severe compaction damage to the farmland. A remedy consists of reducing both the wheel load and the contact pressure.Early in the 1990s, the author suggested an experimental examination of the problem of soil compaction under fully controlled conditions. The ensuing research program, which was sponsored by the Grant Agency of the Czech Republic, included a series of experiments with loaded wheels carried out in the experimental grounds of the Czech University of Agriculture and, subsequently, their physical modelling in the laboratory of the Department of Motor Vehicles, Technical faculty. This program has corroborated the idea that physical modelling under controlled conditions, complemented by an adequate evaluation procedure, has a promising potential to predict full-scale ground compaction and become a sound basis for practical measures. This paper describes the laboratory equipment, testing technique, and the way of evaluating the compaction potential of tires in terms of soil dry bulk density, leading to a Compaction Number (CN) rating of individual tires. Practically, the CN rating is supposed to be included in agricultural tire catalogues to complement the load capacity/inflation pressure values for hard ground (e.g., ETRTO specifications based on tire strength and wear).  相似文献   

20.
Previous studies show that the material properties of the rubber are among the most important factors when designing a tire. In this study, we investigated the effects of different rubber properties on tire performance on ice. A theoretical model that incorporates these tire material properties was developed. The model was used to estimate the height of the water film generated due to friction and the friction coefficient for both, dry and wet regions at the tire-ice contact patch. After validating the results using experimentally collected data, the model was used to perform a sensitivity analysis on the tire performance with respect to six material properties of the tread rubber: thermal conductivity, rubber density, Young’s modulus, specific heat, roughness parameter of the rubber, and radii of spherical asperities of the rubber. To study the effect of each parameter, the desired material property was varied within a specific range while the other parameters were kept constant. The results from this study show the sensitivity of the magnitude of the friction coefficient to the rubber material properties. The friction coefficient has a direct relationship with the density of the rubber and has an inverse relationship with Young’s modulus, specific heat, and roughness parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号