首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A general asymptotic plane strain crack tip stress field is constructed for linear versions of neo-Hookean materials, which spans a wide variety of special cases including incompressible Mooney elastomers, the compressible Blatz–Ko elastomer, several cases of the Ogden constitutive law and a new result for a compressible linear neo-Hookean material. The nominal stress field has dominant terms that have a square root singularity with respect to the distance of material points from the crack tip in the undeformed reference configuration. At second order, there is a uniform tension parallel to the crack. The associated displacement field in plane strain at leading order has dependence proportional to the square root of the same coordinate. The relationship between the amplitude of the crack tip singularity (a stress intensity factor) and the plane strain energy release rate is outlined for the general linear material, with simplified relationships presented for notable special cases.  相似文献   

2.
Cavity formation in incompressible as well as compressible isotropic hyperelastic materials under spherically symmetric loading is examined by accounting for the effect of surface energy. Equilibrium solutions describing cavity formation in an initially intact sphere are obtained explicitly for incompressible as well as slightly compressible neo-Hookean solids. The cavitating response is shown to depend on the asymptotic value of surface energy at unbounded cavity surface stretch. The energetically favorable equilibrium is identified for an incompressible neo-Hookean sphere in the case of prescribed dead-load traction, and for a slightly compressible neo-Hookean sphere in the case of prescribed surface displacement as well as prescribed dead-load traction. In the presence of surface energy effects, it becomes possible that the energetically favorable equilibrium jumps from an intact state to a cavitated state with a finite cavity radius, as the prescribed loading parameter passes a critical level. Such discontinuous cavitation characteristics are found to be highly dependent on the relative magnitude of the surface energy to the bulk strain energy.  相似文献   

3.
The purpose of this research is to investigate the basic issues that arise when generalized plane strain deformations are superimposed on anti-plane shear deformations in isotropic incompressible hyperelastic materials. Attention is confined to a subclass of such materials for which the strain-energy density depends only on the first invariant of the strain tensor. The governing equations of equilibrium are a coupled system of three nonlinear partial differential equations for three displacement fields. It is shown that, for general plane domains, this system decouples the plane and anti-plane displacements only for the case of a neo-Hookean material. Even in this case, the stress field involves coupling of both deformations. For generalized neo-Hookean materials, universal relations may be used in some situations to uncouple the governing equations. It is shown that some of the results are also valid for inhomogeneous materials and for elastodynamics.  相似文献   

4.
The singular elastostatic field due to a crack in rubberlike materials   总被引:1,自引:0,他引:1  
Within the framework of finite-strain elastostatics an asymptotic analysis is carried out in order to calculate the singular field near the crack tip in a slab under conditions of plane deformation. A class of Ogden-Ball hyperelastic rubberlike materials and general loading conditions ensuring vanishing tractions on the crack faces near the crack tip are considered. It is shown that the singular deformation field near the crack tip can be specified by applying a rigid body rotation with a subsequent parallel translation to a so-called canonical field. The adjective canonical is adopted here to denote the field with symmetrically opening crack faces, just resembling the displacement field of the symmetric mode in linear elastic fracture mechanics. No analogy with the antisymmetric mode is possible, and the crack equilibrium criterion requires only one stress intensity factor to be determined.  相似文献   

5.
Franco Cardin 《Meccanica》1991,26(2-3):161-167
The present work deals with the geometrical desingularization of a well-known asymptotic realization of the ideal holonomic constraints in analytical mechanics. A structure of this kind is extended to the theory of continuous materials—in particular, to elastic materials with internal constraints. By using the same geometrical structure, another aim of this paper can be fulfilled: a new type of generalized hyperelastic material is introduced and some physical examples are discussed. This definition of a generalized hyperelastic material globalizes and unifies the usual definition of a hyperelastic material and its analogue for crystalline solids according to Ericksen and Pitteri. We recall that generalized hyperelastic materials can display a multi-valued strain-stress behaviour, as discussed by Ericksen. Such a behaviour can be used to describe phenomena usually regarded as typical of plasticity.
Sommario In questo lavoro si considera una desingolarizzazione geometrica di una ben nota realizzazione asintotica dei vincoli lisci olonomi in meccanica analitica. Tale struttura è estesa allla meccanica dei continui, in particolare, al caso dei materiali elastici con vincoli interni. Utilizzando lo stesso ambiente geometrico di quest'ultima costruzione si realizza un altro scopo di questa nota: viene introdotta una nuova definizione di materiale iperelastico in senso generalizzato e sono discussi alcuni esempi fisici noti in letteratura. Questa definizione globalizza e unifica l'usuale definizione di materiale iperelastico e il suo analogo per i solidi cristallini secondo Ericksen e Pitteri. Tali materiali possono manifestare una risposta stress-strain multivoca. Questo comportamento può essere utilizzato per la descrizione di fenomenologie tipiche della plasticità.
  相似文献   

6.
This paper presents a strain energy density for isotropic hyperelastic materials. The strain energy density is decomposed into a compressible and incompressible component. The incompressible component is the same as the generalized Mooney expression while the compressible component is shown to be a function of the volume invariant J only. The strain energy density proposed is used to investigate problems involving incompressible isotropic materials such as rubber under homogeneous strain, compressible isotropic materials under high hydrostatic pressure and volume change under uniaxial tension. Comparison with experimental data is good. The formulation is also used to derive a strain energy density expression for compressible isotropic neo-Hookean materials. The constitutive relationship for the second Piola–Kirchhoff stress tensor and its physical counterpart, involves the contravariant Almansi strain tensor. The stress stretch relationship comprises of a component associated with volume constrained distortion and a hydrostatic pressure which results in volumetric dilation. An important property of this constitutive relationship is that the hydrostatic pressure component of the stress vector which is associated with volumetric dilation will have no shear component on any surface in any configuration. This same property is not true for a neo-Hookean Green’s strain–second Piola–Kirchhoff stress tensor formulation.  相似文献   

7.
Up to now, the indentation of hyperelastic soft materials has not been completely understood. In this paper, the spherical indentation on hyperelastic soft solids was systematically investigated through theoretical analysis and finite element method (FEM). The validation and application of the Hertzian load-displacement relation for indentation of hyperelastic soft materials were clarified, the effects of large deformation and material nonlinearity on spherical indentation of hyperelastic soft materials were analyzed and discussed. It was found that the complicated indentation behaviors of hyperelastic soft solids mainly depended on the coupling interactions of large deformation and material nonlinearity. Besides, we proposed two new nonlinear elastic contact models to separate the effects of large deformation and material nonlinearity on spherical indentation responses of hyperelastic soft solids. Our efforts might help to enhance the understanding of hyperelastic indentation problems and provided necessary instructions for the mechanical characterization of hyperelastic soft materials.  相似文献   

8.
A closed-form asymptotic solution is provided for velocity fields and the nominal stress rates near the tip of a stationary crack in a homogeneously pre-stressed configuration of a nonlinear elastic, incompressible material. In particular, a biaxial pre-stress is assumed with stress axes parallel and orthogonal to the crack faces. Two boundary conditions are considered on the crack faces, namely a constant pressure or a constant dead loading, both preserving an homogeneous ground state. Starting from this configuration, small superimposed Mode I or Mode II deformations are solved, in the framework of Biot's incremental theory of elasticity. In this way a definition of an incremental stress intensity factor is introduced, slightly different for pressure or dead loading conditions on crack faces. Specific examples are finally developed for various hyperelastic materials, including the J2-deformation theory of plasticity. The presence of pre-stress is shown to strongly influence the angular variation of the asymptotic crack-tip fields, even if the nominal stress rate displays a square root singularity as in the infinitesimal theory. Relationships between the solution with shear band formation at the crack tip and instability of the crack surfaces are given in evidence.  相似文献   

9.
Damaged nonlinear antiplane shear problems with a variety of singularities are studied analytically. A deformation plasticity theory coupled with damage is employed in analysis. The effect of microscopic damage is considered in terms of continuum damage mechanics approach. An exact solution for the general damaged nonlinear singular antiplane shear problem is derived in the stress plane by means of a hodograph transformation, then corresponding higher order asymptotic solutions are obtained by reversing the stress plane solution to the physical plane. As example, traction free sharp notch and crack, rigid sharp wedge and flat inclusion, and mixed boundary sharp notch problems are investigated, respectively. Consequently, higher order fields are obtained, in which analytical expressions of the dominant and second order singularity exponents and angular distribution functions of the near tip fields are derived. Effects of the damage and hardening exponents of materials and the geometric angle of notch/wedge on the near tip quantities are discussed in detail. It is found that damage leads to a weaker dominant singularity of stress, but to little stronger singularities of the dominant and second order terms of strain compared to that for undamaged material. It is also seen that damage has important effect on the angular distribution functions of the near tip stress and strain fields. As special cases, higher order analytical solutions of the crack and rigid flat inclusion tip fields are obtained, respectively, by reducing the notch/wedge tip solutions. Effects of damage and hardening exponents on the dominant and second order terms in the solutions of the crack and inclusion tip fields are discussed.  相似文献   

10.
In this paper, a general theory on the asymptotic field near the crack tip for plates and shells with and without shear deformation effect is established. It is found that four stress intensity factors, two for symmetrical and antisymmetrical stretching and two for symmetrical and antisymmetrical bending, are required to describe arbitrary asymptotic fields near the crack tip for plates without shear deformation. An additional stress intensity factor is required for the transverse shearing force induced by antisymmetrical bending when the shear deformation is included in the analysis. It is also proven by means of the complex variable technique that for problems of plates with shear deformation, there exist similarities in the asymptotic expressions of moments and membrane forces and also in the asymptotic expressions of in-plane displacements and rotations of the mid-surface. The energy release rate associated with crack growth in the direction of the crack line can be expressed in terms of stress intensity factors by means of Irwin's method of work and energy associated with a virtual crack extension. A combined stress intensity factor can be defined through the total energy release rate. The theory of the fracture of plates is generalized and applied to the study of problems in the fracture of shells. An example of an infinitely long cylindrical shell with a circumferential crack subjected to remote axial tension is given to demonstrate the application of the theory and to test the accuracy of the numerical analysis used for the problem.  相似文献   

11.
This work investigates the behavior of a traction-free crack at the interface of two semi-infinite slabs bonded together under the conditions of plane strain. A determination of the mathematical form of the deformation and stresses near the crack-tip, consistent with the fully non-linear equilibrium theory of compressible elastic solids, is found by an asymptotic treatment of the deformation.Each slab is assumed to be hyperelastic, homogeneous, and isotropic with Knowles-Sternberg type asymptotic conditions on its strain-energy density. It is shown that under these conditions, the interface-crack problem admits solutions in which oscillatory singularities do not occur. This suggests that it is the approximations made by the linear theory which produce these singularities.  相似文献   

12.
In this paper, based on the three-dimensional flow theory of plasticity, the fundametal equations for plane strain problem of elastic-perfectly plastic solids are presented. By using these equations the elastic-plastic fields near the crack tip growing step-by-step in an elastic incompressible-perfectly plastic solid are analysed.The first order asymptotic solutions for the stress field and velocity fields near the crack tip are obtained. The solutions show the evolution process of elastic unloading domain and the development process of central fan domain and reveal the possibility of the presence of the secondary plastic domain. The second order asymptotic solution for stress field is also presented.  相似文献   

13.
Thin polymer layers on substrates have a wide range of application in important areas. However, it is impossible to measure the mechanical properties with the traditional testing methods. Recently, nanoindentation became a new but primary testing technique of thin layers. In the present work, based on a finite element model of contact mechanics and hyperelastic materials, nanoindentation of polymer layers is simulated with the finite element code ABAQUS?. Three often used hyperelastic models, that is, the neo-Hookean, Mooney–Rivlin and Yeoh models are investigated. The behaviour of these three models is compared to each other in different boundary value problems of nanoindentation in order to get some feeling of the different behaviour of various hyperelastic models under nanoindentation. In contrast to the traditional analytical method, the penetration depth is not restrained to avoid the influence of the substrate. A parameter re-identification strategy is employed to extract the parameters of the material models at small and finite deformation based on the principle of biological evolution. Furthermore, it is investigated how large the penetration depth has to be chosen in order to distinguish different models in reference to the load–displacement curves. Finally, the possibility is discussed of describing the data obtained by a non-linear complex model using the relatively simple approach based on the neo-Hookean model.  相似文献   

14.
提出了用插值矩阵法分析与各向异性材料界面相交的平面裂纹应力奇异性。基于V形切口尖端附近区域位移场渐近展开,将位移场的渐近展开式的典型项代入线弹性力学基本方程,得到关于平面内与复合材料界面相交的裂纹应力奇异性指数的一组非线性常微分方程的特征值问题,运用插值矩阵法求解,获得了平面内各向异性结合材料中与界面以任意角相交的裂纹尖端的应力奇异性指数随裂纹角的变化规律,数值计算结果与已有结果比较表明,本文方法具有很高的精度和效率。  相似文献   

15.
A solid is said to be flexoelectric when it polarizes in proportion to strain gradients. Since strain gradients are large near defects, we expect the flexoelectric effect to be prominent there and decay away at distances much larger than a flexoelectric length scale. Here, we quantify this expectation by computing displacement, stress and polarization fields near defects in flexoelectric solids. For point defects we recover some well known results from strain gradient elasticity and non-local piezoelectric theories, but with different length scales in the final expressions. For edge dislocations we show that the electric potential is a maximum in the vicinity of the dislocation core. We also estimate the polarized line charge density of an edge dislocation in an isotropic flexoelectric solid which is in agreement with some measurements in ice. We perform an asymptotic analysis of the crack tip fields in flexoelectric solids and show that our results share some features from solutions in strain gradient elasticity and piezoelectricity. We also compute the energy release rate for cracks using simple crack face boundary conditions and use them in classical criteria for crack growth to make predictions. Our analysis can serve as a starting point for more sophisticated analytic and computational treatments of defects in flexoelectric solids which are gaining increasing prominence in the field of nanoscience and nanotechnology.  相似文献   

16.
The strain gradient effect becomes significant when the size of fracture process zone around a crack tip is comparable to the intrinsic material lengthl, typically of the order of microns. Using the new strain gradient deformation theory given by Chen and Wang, the asymptotic fields near a crack tip in an elastic-plastic material with strain gradient effects are investigated. It is established that the dominant strain field is irrotational. For mode I plane stress crack tip asymptotic field, the stress asymptotic field and the couple stress asymptotic field can not exist simultaneously. In the stress dominated asymptotic field, the angular distributions of stresses are consistent with the classical plane stress HRR field; In the couple stress dominated asymptotic field, the angular distributions of couple stresses are consistent with that obtained by Huang et al. For mode II plane stress and plane strain crack tip asymptotic fields, only the stress-dominated asymptotic fields exist. The couple stress asymptotic field is less singular than the stress asymptotic fields. The stress asymptotic fields are the same as mode II plane stress and plane strain HRR fields, respectively. The increase in stresses is not observed in strain gradient plasticity for mode I and mode II, because the present theory is based only on the rotational gradient of deformation and the crack tip asymptotic fields are irrotational and dominated by the stretching gradient. The project supported by the National Natural Science Foundation of China (19704100), National Natural Science Foundation of Chinese Academy of Sciences (KJ951-1-20), CAS K.C. Wong Post-doctoral Research Award Fund and Post-doctoral Science Fund of China  相似文献   

17.
This paper considers the plane strain notch-tip filed in a rubber-like material under tension. Based on a new constitutive relation, the asymptotic equations of the near tip field are derived and solved. It is shown that the notch tip field is composed of two narrowing sectors and an expanding sector. The dominant stress and strain near the notch tip are found to be in a state of uniaxial tension.  相似文献   

18.
The asymptotic stress and strain distribution near a crack tip in rubber-like materials is determined by finite element for in-plane mixed mode loading. For large strain, the crack tip field is always in a state of uniaxial tension. The shear load affects only the orientation of the deformed near tip field in the space. A good agreement is obtained between the theoretical and numerical results.  相似文献   

19.
We consider deformations of unconstrained, isotropic hyperelastic solids which satisfy the condition that the determinant of the deformation gradient is constant. In the absence of body forces, it is shown (i) that a certain deformation in this class (which describes the bending of rectangular blocks into annular cylindrical sectors) is not possible in any of the considered materials, (ii) that in the case when the body fills the whole space, it is composed of a compressible neo-Hookean material and it is subjected to relatively moderate loads, these deformations are necessarily homogeneous and (iii) that for boundary conditions of place and relative to a certain sub-class of the class of considered materials, these deformations are globally stable, in the sense that they are minimizers for the total energy with respect to smooth variations that are compatible with the boundary conditions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
The nonlinearly elastic Boussinesq problem is to find the deformation produced in a homogeneous, isotropic, elastic half space by a point force normal to the undeformed boundary, using the exact equations of elasticity for an incompressible or compressible material. First we derive the governing equations from the Principle of Stationary Potential Energy and then we examine some of the implications of the conservation laws of elastostatics when applied to the entire half space, assuming that the well-known linear Boussinesq solution is valid at large distances from the point load. Next, we hypothesize asymptotic forms for the solutions near the point load and, finally, we seek solutions for two specific materials: an incompressible, generalized neo-Hookean (power-law) material introduced by Knowles and a compressible Blatz-Ko material. We find that the former, if sufficiently stiffer than the conventional neo-Hookean material, can support a finite deflection under the point load, but that the latter cannot.This research was supported by the U.S. Army Research Office under Grant DAAL 03-91-G-0022 and by the National Science Foundation under Grant MSS-9102155.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号