首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
An axially compressed beam resting on a non-linear foundation undergoes a loss of stability (buckling) via a supercritical pitchfork bifurcation. In the post-buckled regime, it has been shown that under certain circumstances the system may experience a secondary bifurcation. This second bifurcation destablizes the primary buckling mode and the system “jumps” to a higher mode; for this reason, this phenomenon is often referred to as mode jumping. This work investigates two new aspects related to the problem of mode jumping. First, a three mode analysis is conducted. This analysis shows the usual primary and secondary buckling events. But it also shows stable solutions involving the third mode. However, for the cases studied here, there is no natural loading path that leads to this solution branch, i.e. only a contrived loading history would result in this solution. Second, the effect of an initial geometric imperfection is considered. This breaks the symmetry of the system and significantly complicates the bifurcation diagram.  相似文献   

2.
A summary is first presented of the conceptual difficulties and paradoxes surrounding plastic bifurcation buckling analysis. Briefly discussed are nonconservativeness, loading rate during buckling, and the discrepancy of buckling predictions with use of J2 flow theory vs J2 deformation theory. The axisymmetric prebuckling analysis, including large deflections, elastic-plastic material behavior and creep is summarized. Details are given on the analysis of nonsymmetric bifurcation from the deformed axisymmetric state. Both J2 flow theory and J2 deformation theory are described. The treatment, based on the finite-difference energy method, applies to layered segmented and branched shells of arbitrary meridional shape composed of a number of different elastic-plastic materials. Numerical results generated with a computer program based on the analysis are presented for an externally pressurized cylinder with conical heads.  相似文献   

3.
The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress,the modified couple stress theory(MCST),and the nonlocal elasticity theories using the differential quadrature method(DQM)is presented.Main advantages of the MCST over the classical theory(CT)are the inclusion of the asymmetric couple stress tensor and the consideration of only one material length scale parameter.Based on the nonlinear von K′arm′an assumption,the governing equations of equilibrium for the micro-classical plate considering midplane displacements are derived based on the minimum principle of potential energy.Using the DQM,the biaxial and shear critical buckling loads of the micro-plate for various boundary conditions are obtained.Accuracy of the obtained results is validated by comparing the solutions with those reported in the literature.A parametric study is conducted to show the effects of the aspect ratio,the side-to-thickness ratio,Eringen’s nonlocal parameter,the material length scale parameter,Young’s modulus of the surface layer,the surface residual stress,the polymer matrix coefficients,and various boundary conditions on the dimensionless uniaxial,biaxial,and shear critical buckling loads.The results indicate that the critical buckling loads are strongly sensitive to Eringen’s nonlocal parameter,the material length scale parameter,and the surface residual stress effects,while the effect of Young’s modulus of the surface layer on the critical buckling load is negligible.Also,considering the size dependent effect causes the increase in the stiffness of the orthotropic micro-plate.The results show that the critical biaxial buckling load increases with an increase in G12/E2and vice versa for E1/E2.It is shown that the nonlinear biaxial buckling ratio decreases as the aspect ratio increases and vice versa for the buckling amplitude.Because of the most lightweight micro-composite materials with high strength/weight and stiffness/weight ratios,it is anticipated that the results of the present work are useful in experimental characterization of the mechanical properties of micro-composite plates in the aircraft industry and other engineering applications.  相似文献   

4.
The torsional buckling of a plastically deforming cruciform column under compressive load is investigated. The problem is solved analytically based on the von Kármán shallow shell theory and the virtual work principle. Solutions found in the literature are extended for path-dependent incremental behaviour as typically found in the presence of the vertex effect that is present in metallic polycrystals.At the critical load for buckling the direction of straining changes by an additional shear component. It is shown that the incremental elastic–plastic moduli are spatially nonuniform for such situations, contrary to the classical J2 flow and deformation theories. The critical shear modulus that governs the buckling equation is obtained as a weighted average of the incremental elastic–plastic moduli over the cross-section of the cruciform.Using a plasticity model proposed by the authors, that includes the vertex effect, the buckling-critical load is computed for a aluminium column both with the analytical model and a FEM-based eigenvalue buckling analysis. The stable post-buckling path is determined by the energy criterion of path-stability. A comparison with the experimentally obtained classical results by Gerard and Becker (1957) shows good agreement without relying on artificial imperfections as necessary in the classical J2 flow theory.  相似文献   

5.
The conventional approach to analysis the buckling of rectangular laminates containing an embedded delamination subjected to the in-plane loading is to simplify the laminate as a beam-plate from which the predicted buckling load decreases as the length of the laminate increases. Two-dimensional analyses are employed in this paper by extending the one-dimensional model to take into consideration of the influence of the delamination width on the buckling performance of the laminates. The laminate is simply supported containing a through width delamination. A new parameter β defined as the ratio of delamination length to delamination width is introduced with an emphasis on the influence of the delamination size. It is found that (i) when the ratio β is greater than one snap-through buckling prevails, the buckling load is determined by the delamination size and depth only; (ii) as the ratio β continues to increase, the buckling load will approach to a constant value. Solutions are verified with the well established results and are found in good agreement with the latter.  相似文献   

6.
Some closed-form equations for the coupling problem of buckling and growth of circular delamination are derived by recourse to the moving boundary variational principle. The axisymmetric buckling of a circular delamination subjected to an equal bi-axial compression is analysed by using high-order perturbation expansion. The axisymmetric buckled delamination has the following properties : under a certain residual pressure, there exist two characteristic radii, namely the critical radius Rc and growing radius Rg; for a certain interface toughness, the blister has three configuration of stationary, stable growth and unstable growth with increasing the loads. Under a higher edge thrust, the nonaxisymmetric secondary buckling will occur on the base of axisymmetric buckling and then the toughness and the driving force of the interface crack will be different along the delamination front. So the growth of circular delamination will not be self-similar. Without any assumption regarding the delamination front, the configurations of the blister with several nonaxisymmetric buckling modes n = 2, 3, 6, 8 are simulated. The nonaxisymmetric growth process for the nonaxisymmetric buckling mode n = 2 is simulated also under a sequence of loads.  相似文献   

7.
Compared with experiments, the J2 deformation theory of plasticity is known to predict plastic buckling with better accuracy than the more accepted incremental J2 flow theory. This paradox is commonly known as the ‘plastic buckling paradox’. In an attempt to analyse this discrepancy, the two mentioned constitutive models were implemented in a non-linear finite element code, along with a third non-associative J2 flow theory. The latter model incorporates a vertex-type plastic flow rule. Using these three constitutive models, the buckling behaviour of plate outstand elements was investigated. Comparisons between the buckling strengths derived are presented. The non-linear static buckling simulations show that the instability introduced by the alternative flow rule of the non-associative model has substantial influence on the buckling behaviour. The acceptance of only small departures from normality was shown to reduce the predicted ultimate capacity of the plates. Furthermore, for plates with small plate slendernesses it was found that the imperfection sensitivity was significantly reduced when using the non-associative flow rule.  相似文献   

8.
In this paper, we consider an imperfect finite beam lying on a nonlinear foundation, whose dimensionless stiffness is reduced from 1 to k as the beam deflection increases. Periodic equilibrium solutions are found analytically and are in good agreement with a numerical resolution, suggesting that localized buckling does not appear for a finite beam. The equilibrium paths may exhibit a limit point whose existence is related to the imperfection size and the stiffness parameter k through an explicit condition. The limit point decreases with the imperfection size while it increases with the stiffness parameter. We show that the decay/growth rate is sensitive to the restoring force model. The analytical results on the limit load may be of particular interest for engineers in structural mechanics.  相似文献   

9.
For active materials such as piezoelectric stacks, which produce large force and small displacement, motion amplification mechanisms are often necessary – not simply to trade force for displacement, but to increase the output work transferred through a compliant structure. Here, a new concept for obtaining large rotations from small linear displacements produced by a piezoelectric stack is proposed and analyzed. The concept uses elastic (buckling) and dynamic instabilities of an axially driven buckling beam. The optimal design of the buckling beam end conditions was determined from a static analysis of the system using Euler's elastica theory. This analysis was verified experimentally. A stack-driven, buckling beam prototype actuator consisting of a pre-compressed PZT stack (140 mm long, 10 mm diameter) and a thin steel beam (60 mm× 12 mm× 0.508 mm) was constructed. The buckling beam served as the motion amplifier, while the PZT stack provided the actuation. The experimental setup, measuring instrumentation and method, the beam pre-loading condition, and the excitation are fully described in the paper. Frequency responses of the system for three pre-loading levels and three stack driving amplitudes were obtained. A maximum 16 peak-to-peak rotation was measured when the stack was driven at an amplitude of 325 V and frequency of 39 Hz. The effects of beam pre-load were also studied.  相似文献   

10.
The solutions to H and H 2 optimization problems of a variant dynamic vibration absorber (DVA) applied to suppress vibration in beam structures are derived analytically. The H optimum parameters such as tuning frequency and damping ratios are expressed based on fixed-point theory to minimize the resonant vibration amplitude, as well as, the H 2 optimum parameters to minimize the total vibration energy or the mean square motion of a beam under random force excitation as analytical formulas. The reduction in maximum amplitude responses and mean square motion of a beam using the traditional vibration absorber is compared with the proposed dynamic absorber. Numerical results show the non-traditional DVA under optimum conditions has better vibration suppression performance on beam structures than the traditional design of DVA. Furthermore, comparing H and H 2 optimization procedures shows that for a beam under random force excitation, use of H2 optimum parameters resulting in smaller mean square motion than the other optimization.  相似文献   

11.
An experimental study of the buckling of closely spaced integrally stiffened cylindrical shells under axial compression was carried out to determine the influence of shell and ring geometry on the applicability of linear theory. Twenty-nine specimens fabricated from 7075-T6 aluminum alloy with different geometries were tested. Test specimens were designed to fail in general instability and under low critical stresses to assure elastic buckling. Agreement of experimental results of the present study, and of those obtained in other studies with linear theory was found to be governed primarily by the ring area parameter, (A 2 /ah). Values of “linearity,” ? (ratio of experimental buckling load to the predicted one), higher than 80 percent were obtained for (A 2 /ah)>0.3 and a clear trend towards ?=1 was observed with increasing values of this parameter. Correlation with linear theory was also found to be influenced by ring spacing, (a/h), or rather the combination (a/h) [1+(A 2 /ah]?1/2. No significant effect of shell and other ring parameters on the correlation with linear theory could be discerned for the shells tested. By a conservative structural-efficiency criterion it was observed that only for low values of the area parameter, (A 2 /ah)<≈0.5 ring-stiffened shells are more efficient than equivalent-weight isotropic ones. Highest efficiencies are obtained for (A 2 /ah)≈0.2.  相似文献   

12.
The problem of a tube under pure bending is first solved as a generalised plane strain problem. This then provides the prebifurcation solution, which is uniform along the length of the tube. The onset of wrinkling is then predicted by introducing buckling modes involving a sinusoidal variation of the displacements along the length of the tube. Both the prebuckling analysis and the bifurcation check require only a two-dimensional finite element discretisation of the cross-section with special elements. The formulation does not rely on any of the approximations of a shell theory, or small strains. The same elements can be used for pure bending and local buckling a prismatic beam of arbitrary cross-section. Here the flow theory of plasticity with isotropic hardening is used for the prebuckling solution, but the bifurcation check is based on the incremental moduli of a finite strain deformation theory of plasticity.For tubes under pure bending, the results for limit point collapse (due to ovalisation) and bifurcation buckling (wrinkling) are compared to existing analysis and test results, to see whether removing the approximations of a shell theory and small strains (used in the existing analyses) leads to a better prediction of the experimental results. The small strain analysis results depend on whether the true or nominal stress–strain curve is used. By comparing small and finite strain analysis results it is found that the small strain approximation is good if one uses (a) the nominal stress–strain curve in compression to predict bifurcation buckling (wrinkling), and (b) the true stress–strain curve to calculate the limit point collapse curvature.In regard to the shell theory approximations, it is found that the three-dimensional continuum theory predicts slightly shorter critical wrinkling wavelengths, especially for lower diameter-to-wall-thickness (D/t) ratios. However this difference is not sufficient to account for the significantly lower wavelengths observed in the tests.  相似文献   

13.
The symmetric and asymmetric buckling of an initially curved micro beam subjected to an axial pre-stressing load and transversal distributed electrostatic force is studied. The analysis is based on a reduced order (RO) model resulting from the Galerkin decomposition with buckling modes of a straight beam used as the base functions. The criteria of symmetric limit point buckling and of non-symmetric bifurcation are derived in terms of the geometric parameters of the beam and the axial load. Two symmetry breaking conditions, defining the relations between the axial load and the geometric parameters of beams for which an asymmetric response bifurcates from the symmetric one, are obtained. The necessary criterion establishes the conditions for the appearance of bifurcation points on the unstable branch of the symmetric response curve; the sufficient criterion assures a realistic asymmetric buckling bifurcating from the stable branches of the symmetric response curve. A comparison between the RO model results and those obtained by direct numerical analysis shows good agreement between the two and indicates that the obtained criteria can be used to predict symmetric and non-symmetric buckling in electrostatically actuated curved pre-stressed micro beams. It is shown that while the symmetry breaking conditions are affected by the nonlinearity of the electrostatic force, its influence is less pronounced than in the case of the symmetric snap-through criterion. The nature of the latter and the relations between it and the symmetry breaking criteria are found to go through a prominent qualitative change as the initial distance between the beam and the electrode, characterizing the electrostatic force, changes.  相似文献   

14.
The asymmetric buckling of a shallow initially curved stress-free micro beam subjected to distributed nonlinear deflection-dependent electrostatic force is studied. In order to highlight the symmetry breaking phenomenon and the approach to its analysis, the subsidiary simplified problem of a curved beam attached to a linearly elastic foundation, and subjected to uniformly distributed “mechanical” load, which is independent of deflections, is addressed first. The analysis is based on a two degrees of freedom reduced order (RO) model resulting from the Galerkin decomposition with linear undamped eigenmodes of a straight beam used as the base functions. Simple approximate expressions are derived defining the geometric parameters of beams for which an asymmetric response bifurcates from the symmetric one. The necessary criterion establishes the conditions for the appearance of bifurcation points on the unstable branch of the symmetric limit point buckling curve; the sufficient criterion assures a realistic asymmetric buckling bifurcating from the stable branches of the curve. It is shown that while the symmetry breaking conditions are affected by the nonlinearity of the electrostatic force, its influence is less pronounced than in the case of the symmetric snap-through criterion. A comparison between the RO model results and those obtained by direct numerical analysis shows good agreement between the two and indicates that the obtained criteria can be used to predict non-symmetric buckling in electrostatically actuated bistable micro beams.  相似文献   

15.
The direct identification of the cohesive law in pure mode I of Pinus pinaster is addressed in this work. The approach couples the double cantilever beam (DCB) test with digital image correlation (DIC). Wooden beam specimens loaded in the radial-longitudinal (RL) fracture propagation system are used. The strain energy release rate in mode I (G I) is uniquely determined from the load–displacement curve by means of the compliance-based beam method (CBBM). This method relies on the concept of equivalent elastic crack length (a eq) and therefore does not require the monitoring of crack propagation during test. DIC measurements are processed with two different purposes. Firstly, the physical evidence of a eq is discussed with regard to actual estimation of the crack length based on post-processing full-field displacement measurements. Secondly, the crack tip opening displacement in mode I (w I) is determined from the displacements near the initial crack tip. The cohesive law in mode I (σ I???w I) is then identified by numerical differentiation of the G I???w I relationship. The methodology and accuracy on this reconstruction are addressed. Moreover, the proposed procedure is validated by finite element analyses including cohesive zone modelling. It is concluded that the proposed data reduction scheme is adequate for assessing the cohesive law in pure mode I of P. pinaster.  相似文献   

16.
The problem considered involves a structure composed of two concentric and bonded tubes subjected to external and uniform pressure. Compression tests are conducted using structures formed by a thin-walled internal rubber tube and a thick-walled external foam tube. Experimental results are plotted under the form of a bifurcation diagram representing the inner cross-sectional area of the thin tube as a function of pressure. The buckling pressure Pb and the contact pressure Pco are determined from this non linear diagram. A numerical computation by the Finite Element Method (FEM) is used in order to calculate the Euler buckling pressure Pb and the results are compared with experimental data. It is shown that the buckling pressure and the associated buckling mode n, strongly depend upon the elastic and geometrical parameters of both the tubes. The experimental and numerical investigations are also extended to postbuckling behaviour. The contact between the opposite sides of the inner wall is occured with a buckling mode index n = 2, 3. This contact phenomenon is given rise to the discontinuity of a previous diagram and was characterized by the contact pressure Pco.  相似文献   

17.
An asymptotic crack-tip analysis of stress and strain fields is carried out for an antiplane shear crack (Mode III) based on a corner theory of plasticity. Because of the nonproportional loading history experienced by a material element near the crack tip in stable crack growth, classical flow theory may predict an overly stiff response of the elastic plastic solid, as is the case in plastic buckling problems. The corner theory used here accounts for this anomalous behavior. The results are compared with those of a similar analysis based on the J2 flow theory of plasticity.  相似文献   

18.
Mixed formulations with C0-continuity basis functions are employed for the solution of some types of one-dimensional fourth- and sixth-order equations, resulting from axial tension and buckling of gradient elastic beams, respectively. A basic characteristic of gradient elasticity type equations is the appearance of boundary layers in the higher-order derivatives of the displacements (e.g., in the stress fields). This is due to the small parameters (related to the size of the microstructure) entering the governing equations. The proposed mixed formulations are based on generalizations of the well-known Ciarlet–Raviart mixed method, where the new main variables are related to second-order (or fourth order, for the buckling problem) derivatives of the displacement field. The continuous and discrete Babuška–Brezzi inf–sup conditions are established. The mixed formulations are numerically tested for both the uniform h- and p-extensions. With regard to the axial tension problem, the standard quasi-optimal rates of convergence are numerically verified in all cases (i.e., algebraic rate of convergence for the h-extension and exponential rate for the p-extension). On the other hand, the h-extension observed convergence rates of the critical (buckling) load for the second model problem are slightly higher than the theoretical ones found in the literature (especially for polynomial order p = 1). The respective observed rates of convergence of the buckling load for the p-extension are still exponential.  相似文献   

19.
Buckling and postbuckling analysis is presented for microtubules subjected to torsion in thermal environments. The microtubule is modeled as a nonlocal shear deformable cylindrical shell which contains small scale effects. The governing equations are based on a higher order shear deformation theory. The thermal effects are included and the material properties are assumed to be temperature-dependent. The small scale parameter e0a is estimated by matching the buckling twist angle of microtubules obtained from the nonlocal shear deformable shell model with the existing result. The results show that the small scale effect plays an important role in the postbuckling of microtubules.  相似文献   

20.
Several experiments were performed with a Kolsky Bar (Split Hopkinson Pressure Bar) device to investigate the dynamic axial buckling of cylindrical shells. The Kolsky Bar is a loading as well as a measuring device which can subject the shells to a fairly good square pulse. An attempt is made to understand the interaction between the stress wave and the dynamic buckling of cylindrical shells. It is suggested that the dynamic axial buckling of the shells, elastic or elasto-plastic, is mainly due to the compressive wave rather than the flexural or bending wave. The experimental results seem to support the two critical velocity theory for plastic buckling, withV c1 corresponding to an axisymmetric buckling mode andV c2 corresponding to a non-symmetric buckling mode. The project supported by National Natural Science Foundation of China  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号