首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
为了优化单兵头面部防护装备结构,提升防护性能,首先开展了基于实爆场和激波管环境的裸头模抗爆炸冲击波对比测试。在此基础上,利用激波管对佩戴不同结构、不同防护等级的头盔-头模系统分别进行了正向及侧向爆炸冲击波防护性能测试,并对头盔-头模系统前部、前额部、顶部、后部、耳部以及眼部等重点区域的冲击波超压峰值和持续作用时间进行对比分析。实验结果表明,基于激波管的抗爆炸冲击波测试方法可替代外场实爆进行考核。受到冲击波正向作用时:两半盔头模顶部测点所测冲击波超压峰值约为喷管出口的 1/6,是裸头模和一体盔头模的 1/3;冲击波在两半盔顶部分体结构处分流卸压并形成叠加反射,导致作用时间延长(从 5.5~8.5 ms),但超压峰值降低明显;对后部测点而言,冲击波的绕行和叠加使一体盔头模所测冲击波超压峰值(365 kPa)略高于两半盔头模(303 kPa),约为裸头模(148 kPa)的 2.5 倍。通过提高单兵头面部防护装备结构密闭性(如佩戴眼镜、耳罩或者防护面罩),可有效阻止冲击波进入头盔-头模系统内部,减弱叠加汇聚效应,提高单兵头面部装备防护性能。  相似文献   

2.
内爆炸对坑道内的人员、装备、结构都具有巨大的毁伤效应,内爆炸的防护技术已成为研究的热点。本文就炸药在坑道内爆炸情况下水的消波效应,开展了坑道模型爆炸试验、实际坑道爆炸试验、数值模拟研究,结果表明:坑道内爆炸条件下水具有显著的消波效应。文中还给出了不同置水工况下坑道空气冲击波超压的衰减率范围,并对水消波效应的机理进行了初步探讨。  相似文献   

3.
球形装药动态爆炸冲击波超压场计算模型   总被引:1,自引:0,他引:1  
聂源  蒋建伟  李梅 《爆炸与冲击》2017,37(5):951-956
为获得球形装药动态爆炸冲击波超压场计算模型,对静态爆炸冲击波超压Baker计算公式加入修正因子进行修正,并建立了构造包含装药运动速度、对比距离和方位角的修正因子函数的方法。为获得修正因子的函数表达式,采用高精度显式欧拉流体动力学软件SPEED针对具有典型运动速度的球形装药空中爆炸过程进行了数值模拟,得到了沿装药不同对比距离和方位角处的动态爆炸冲击波超压峰值。在对数值模拟结果处理的基础上,经过数据拟合获得了动态爆炸冲击波超压场计算模型。校验结果表明,该模型能较准确描述动态爆炸冲击波超压分布,具有普适性。  相似文献   

4.
采用有限元分析软件ATUODYN,对接触爆炸荷载作用下带孔防护结构内冲击波的传播进行了数值模拟,得到了防护结构孔口和内部中心处冲击波超压-时间曲线;分析了炸药量和爆心距孔口距离对防护结构内部超压、正压冲量的影响;以数值计算结果为基础,结合量纲分析,拟合得到了结构内部中心处爆炸冲击波特征参数的预估公式。  相似文献   

5.
爆炸引起的颅脑损伤已经成为现代战场单兵的主要致伤形式,而相关的致伤机理尚未完全阐明。本文中,针对头部在爆炸冲击波作用下的动态响应及相关致伤机理进行了数值模拟研究。首先,基于颅脑的核磁共振切片建立了人体头部三维数值模型,该模型真实地反映了颅脑的生理特征与细节构造;利用该模型对人体头部碰撞实验进行数值模拟,模拟结果与实验结果吻合良好,验证了头部模型的有效性。在此基础上,基于欧拉-拉格朗日耦合(Euler-Lagrangian coupling method,CEL)方法发展了爆炸冲击波-头部流固耦合模型,对头部受到爆炸冲击波正面冲击工况进行了数值模拟,分别从流场压力分布、脑组织压力、颅骨变形与加速度等方面对头部动态响应过程进行了分析。爆炸冲击波峰值压力在流固耦合作用下增大为入射波的3.5倍,致使受到直接冲击处的颅骨与脑组织发生高频振动,相应的振动频率高达8 kHz,这与碰撞载荷下的脑组织动态响应是完全不同的。同时,该处颅骨的局部弯曲变形会沿着颅骨进行“传播”,影响着整个颅骨的变化构型,从而决定了脑组织压力与损伤的演化过程。  相似文献   

6.
为获得实际温、湿度环境中冲击波参数计算模型,计算了考虑温、湿度的理想气体状态方程参数,利用SPEED软件,针对典型状态空气中球形装药爆炸过程进行数值模拟,得到了温、湿度对爆炸冲击波参数的影响规律。结果表明,温度和相对湿度对冲击波超压的影响较小,而正压作用时间和冲量随温度和相对湿度的升高均呈线性递减关系,在高温高湿和寒冷干燥条件下,冲击波正压作用时间和冲量相差分别达21.8%和18.4%。以经典工程计算模型为基础,通过引入含有温度、湿度和对比距离的修正因子,建立了考虑环境温、湿度的球形装药爆炸冲击波参数的计算模型。采用该模型计算得到的不同药量球形TNT爆炸冲击波参数与数值仿真结果吻合较好,可对装药在实际环境中威力评估提供参考。  相似文献   

7.
隧道开挖爆破产生的空气冲击波的破坏效应,将会对人员、机具设备与周围环境造成危害。隧道钻孔爆破冲击波的影响因素比裸露药包爆炸更多、更复杂,研究其衰减规律对采取合适的防护措施意义重大。本文中开展了时速350 km双线铁路大断面隧道钻孔爆破空气冲击波的现场测试,分析了不同工况下冲击波传播规律及影响因素。结果表明:钻爆冲击波超压时程曲线存在多个不同幅值的超压波峰,波峰之间具有明显微差延时的短间隔性,传播至远场未形成稳定的单一平面波,与单一药包爆炸冲击波的传播规律存在差异;钻爆冲击波超压信号由多段与微差延时相对应的子信号叠加而成,子信号数量与毫秒延期雷管段数相同,呈现出典型的时域特征;相同爆破条件下,大断面隧道钻爆时的乳化炸药冲击波转化因数小于小断面巷道工况下的;相较于总药量及最大段药量,按掏槽药量计算的超压峰值与实测超压峰值之间的相关性最强,钻爆冲击波最大超压峰值宜按掏槽段炸药TNT当量确定;隧道内大型机械设备等障碍物改变了钻爆冲击波流场的传播规律,呈现较明显的叠加放大效应。  相似文献   

8.
为了研究活性材料爆炸驱动反应特性,基于粉末压制成型工艺,制备了Al/PTFE、Al/Ni两种典型的活性材料及Al2O3/PTFE、Al2O3/PTFE/W惰性材料。通过爆炸驱动试验,并结合高速摄影、远红外热像仪以及峰值超压测试技术,分析了不同活性材料壳体装药爆炸火球、温度场分布及空气冲击波峰值超压等特性。同时,在炸药爆炸空气冲击波峰值超压经验计算模型中考虑了活性材料释放的化学能,分析了反应释放能量对空气冲击波的影响规律。结果表明:活性材料在爆炸驱动过程中经历了强加载条件下反应、产生碎片并向四周飞散、撞击钢板及后续反应等阶段。活性材料对炸药爆炸产生的空气冲击波具有强化作用,爆炸加载瞬间材料仅发生了部分化学反应。  相似文献   

9.
为有效表征不同海拔坑道内爆炸冲击波的传播特征,利用非线性显式动力学有限元软件AUTODYN,研究了海拔高度对长直坑道内爆炸冲击波传播的影响规律,探讨了高海拔环境对坑道内冲击波传播的影响,基于量纲分析,建立了适用于不同海拔高度典型坑道内冲击波峰值超压的计算模型,并通过数值计算进行了验证。结果表明:随着海拔高度升高,坑道内爆炸冲击波波阵面传播速度与径向的冲击波参数偏差增大,平面波形成距离增加,冲击波峰值超压降低;在0~4 000 m范围内,海拔高度每升高1 000 m,冲击波冲量降低约0.91%。结合Sachs无量纲修正方法和量纲分析,推导出不同海拔高度冲击波峰值超压的理论分析模型,模型计算结果与数值计算结果的相对偏差不大于10%,能够为高海拔环境下坑道内爆炸冲击波的传播提供理论依据。  相似文献   

10.
运用非线性显式动力有限元程序LS-DYNA,基于多物质Euler算法,对TNT炸药和乙炔-空气混合气体两种爆炸源在自由大气场中爆炸产生的冲击波荷载特征参数进行数值模拟,比较两种爆源产生的冲击波压力传播规律。基于爆能等效原理,按超压相等的原则给出了气体爆炸名义比例距离计算公式。结果表明,基于Euler算法可以较好地描述乙炔-空气混合气体爆炸空气冲击波传播规律,爆炸压力随着距爆源距离的增大而迅速衰减,且两种爆源产生的冲击波超压峰值误差随着冲击波传播距离的增大而逐渐减小。采用名义比例距离公式修正后,气体爆炸与炸药爆炸冲击波计算误差可以得到有效控制。当爆炸冲击波超压小于0.5MPa时,可以采用乙炔-空气混合气体代替化学炸药进行模爆器内爆炸实验加载。  相似文献   

11.
为研究多孔吸能材料泡沫铝板对工程结构的抗爆防护作用,开展室外爆炸破坏实验,分别对设置不同泡沫铝防护层的钢筋混凝土(reinforced concrete,RC)板在爆炸荷载下的动态响应及破坏模式进行了研究,并运用LS-DYNA软件建立了有限元模型。通过与实验对照,验证了模型的可行性,对比分析了有、无泡沫铝防护层钢筋混凝土板的损伤破坏规律,并讨论了泡沫铝密度梯度分布和纵筋配筋率的影响。结果表明:有限元模型能够有效分析含泡沫铝防护层RC板的动态响应及其破坏形态;泡沫铝防护层能够有效减小钢筋混凝土板的挠度变形,降低试件的破坏程度;泡沫铝密度由下到上递增情况对RC板的减爆效果最好;增大配筋率可以提升泡沫铝防护RC板整体抗爆性能。  相似文献   

12.
利用LS-DYNA非线性有限元程序,基于Eulerian和Lagrangian耦合的方法,研究了RHT本构模型模拟的混凝土板在爆炸荷载下的动力反应,并且将数值结果与现场实验结果进行比较,由此说明了RHT本构模型模拟爆炸荷载下混凝土动力反应的有效性。研究了2 t TNT炸药在距离坝体上游面10 m不同起爆深度的情况下,有泡沫混凝土保护层和无泡沫混凝土保护层的坝体动力响应及其损伤状况。计算结果表明,无泡沫混凝土保护层时,坝体上游面主要损伤区域位置总是随起爆深度的增加向坝体底部移动;当上游表面有泡沫混凝土保护层时,坝体上游表面的损伤明显变小,下游面的损伤较无保护层情况也明显减小。表明泡沫混凝土能够有效减小混凝土大坝在爆炸荷载下的损伤,在提高混凝土大坝的抗爆性能方面起到很好的保护作用。  相似文献   

13.
为研究近爆作用下带泡沫混凝土复合结构的地下洞室的抗爆性能,基于LS-DYNA非线性有限元软件,建立了TNT炸药-围岩-锚杆-衬砌结构-空气的爆炸效应全耦合模型。应用ALE多物质流固耦合算法对比分析了普通衬砌结构洞室和带泡沫混凝土夹层的衬砌结构洞室的重要控制测点的应力、空气层压力和位移。测点峰值应力与TM5-855-1的经验公式吻合良好,证明了数值模拟的可靠性。数值研究结果表明,相比普通混凝土夹层,泡沫混凝土夹层能够有效地削弱爆炸冲击波的传播,大幅降低洞室内部空气的压力峰值,降低超压对人体器官的损伤,提高洞室内部人员的生存几率;采用泡沫混凝土夹层的衬砌需加强拱顶区域的刚度以降低顶底板相对位移差。研究结果为地下洞室抗爆设计提供了参考依据。  相似文献   

14.
提出了一种基于地震波触发的战斗部爆炸冲击波超压测试方法,该测试方法能可靠获取战斗部动爆冲击波超压峰值。采用提出的测试方法对着靶速度为0、535和980 m/s的战斗部空中爆炸冲击波分别进行了测试,并对战斗部动爆冲击波超压峰值测试结果和经验公式计算值进行了对比,定量分析了战斗部速度对冲击波压力场分布的影响。最后,在实测数据的基础上采用薄板样条插值方法重建了战斗部动爆冲击波超压三维可视化模型,为实战复杂环境下基于实测数据研究动爆冲击波特性提供了依据。  相似文献   

15.
This paper presents results of experiments and numerical modeling on the mitigation of blast waves using dry aqueous foams. The multiphase formalism is used to model the dry aqueous foam as a dense non-equilibrium two-phase medium as well as its interaction with the high explosion detonation products. New experiments have been performed to study the mass scaling effects. The experimental as well as the numerical results, which are in good agreement, show that more than an order of magnitude reduction in the peak overpressure ratio can be achieved. The positive impulse reduction is less marked than the overpressures. The Hopkinson scaling is also found to hold particularly at larger scales for these two blast parameters. Furthermore, momentum and heat transfers, which have the main dominant role in the mitigation process, are shown to modify significantly the classical blast wave profile and thereafter to disperse the energy from the peak overpressure due to the induced relaxation zone. In addition, the velocity of the fireball, which acts as a piston on its environment, is smaller than in air. Moreover, the greater inertia of the liquid phase tends to project the aqueous foam far from the fireball. The created gap tempers the amplitude of the transmitted shock wave to the aqueous foam. As a consequence, this results in a lowering of blast wave parameters of the two-phase spherical decaying shock wave.  相似文献   

16.

The application of hard/soft composite structure in personnel armor for blast mitigation is relatively practical and effective in realistic protection engineering, such as the shell/liner system of the helmet. However, there is still lacking a reliable experimental methodology to effectively evaluate the blast mitigation performance when the structure directly contacts the protected target, which limits the development of protection structures. In this paper, we proposed a new method to evaluate experimentally and numerically the blast mitigation performance of hard/soft composite structures. The blast mitigation mechanism is analyzed. The hard/soft structures were composed of ultra-high molecular weight polyethylene (UHMWPE) composite and expanded polyethylene (EPE) foam. In field explosion experiment, a 7.0 kg trinitrotoluene (TNT) spherical charge is used to generate blast waves at a 3.8 m stand-off distance. A pressure test device is designed to support the tested structure and measure the transmitted blast pressure pulses after passing through the structure. Experimental results indicate that the hard/soft structures can mitigate the blast pressure pulse into the triangular pressure pulse, through making the pulse profile flatter, reducing the pressure amplitude, and delaying the pulse arrival time. Specifically, the combination of 7 mm UHMWPE composite and 20 mm EPE foam can reduce the blast pressure amplitude by 40%. Correspondingly, the finite element simulation is also carried out to understand the blast mitigation mechanism. The numerical results indicate that the regulation for blast pressure pulses mainly complete at the hard/soft interface, which is attributed to the reflection of pressure waves at the interface and the deformation of the soft layer compressed by the hard layer possessing kinetic energy. Furthermore, based on these analyses, the corresponding theoretical model is proposed, and it can well explain the experimental and numerical results. This study is meaningful for evaluating and designing high-performance blast mitigation structures.

  相似文献   

17.
A procedure aimed at developing a fast-running method for blast-wave effects characterization behind a protection barrier is presented. Small-scale experiments of a hemispherical gaseous charge (stoichiometric propane–oxygen mixture) without and with a prismatic protective barrier are used to validate the use of an in-house CFD code for gaseous detonation. From numerical experiments, pressure loss of a blast wave at a corner is quantified. These fits, in conjunction with TM5-1300 reflection charts, are used to estimate the maximum overpressure around a protective barrier through geometrical and empirical laws. The results show good agreement with numerical and experimental data from the ANR-BARPPRO research project.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号