首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this paper is to study the dynamic behaviour of functionally graded parabolic and circular panels and shells of revolution. The First-order Shear Deformation Theory (FSDT) is used to study these moderately thick structural elements. The treatment is developed within the theory of linear elasticity, when the materials are assumed to be isotropic and inhomogeneous through the thickness direction. The two-constituent functionally graded shell consists of ceramic and metal that are graded through the thickness, from one surface of the shell to the other. Two different power-law distributions are considered for the ceramic volume fraction. For the first power-law distribution, the bottom surface of the structure is ceramic rich, whereas the top surface is metal rich and on the contrary for the second one. The governing equations of motion are expressed as functions of five kinematic parameters, by using the constitutive and kinematic relationships. The solution is given in terms of generalized displacement components of the points lying on the middle surface of the shell. The discretization of the system equations by means of the Generalized Differential Quadrature (GDQ) method leads to a standard linear eigenvalue problem, where two independent variables are involved without using the Fourier modal expansion methodology. Numerical results concerning eight types of shell structures illustrate the influence of the power-law exponent and of the power-law distribution choice on the mechanical behaviour of parabolic and circular shell structures. Preliminary results were presented by the authors at the XVIII° National Conference of Italian Association of Theoretical and Applied Mechanics (AIMETA 2007) (Tornabene and Viola 27).  相似文献   

2.
This research investigates three-dimensional free vibration analysis of four-parameter continuous grading fiber reinforced (CGFR) cylindrical panels resting on Pasternak foundations by using generalized power-law distribution. The functionally graded orthotropic panel is simply supported at the edges, and it is assumed to have an arbitrary variation of matrix volume fraction in the radial direction. A four-parameter power-law distribution presented in literature is proposed. Symmetric and asymmetric volume fraction profiles are presented. Suitable displacement functions that identically satisfy the boundary conditions at the simply supported edges are used to reduce the equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which are solved by generalized differential quadrature method, and natural frequency is obtained. The fast rate of convergence of the method is demonstrated, and to validate the results, comparisons are made with the available solutions for functionally graded isotropic shells with/without elastic foundations. The effect of the elastic foundation stiffness parameters and various geometrical parameters on the vibration behavior of the CGFR cylindrical panels is investigated. This work mainly contributes to illustrate the influence of the four parameters of power-law distributions on the vibration behavior of functionally graded orthotropic cylindrical panels resting on elastic foundation. This paper is also supposed to present useful results for continuous grading of matrix volume fraction in the thickness direction of a cylindrical panel on elastic foundation and comparison with similar discrete laminated composite cylindrical panel.  相似文献   

3.
研究了四边简支条件下功能梯度圆锥壳的非线性自由振动。首先,通过Voigt模型和幂律分布模型描述了功能梯度材料的物理属性。然后,考虑von-Karman几何非线性建立了功能梯度圆锥壳的能量表达式,利用Hamilton原理推出圆锥壳的运动方程。在此基础上,采用Galerkin法,只考虑横向振动,功能梯度圆锥壳运动方程可简化为单自由度非线性振动微分方程。最后,通过改进的L-P法和Runge-Kutta法求解非线性振动方程,讨论功能梯度圆锥壳的非线性振动响应,分析几何参数和陶瓷体积分数指数对圆锥壳非线性频率响应的影响。结果表明,几何参数对非线性频率和响应的影响相较于陶瓷体积分数指数更明显;圆锥壳的几何参数和陶瓷体积分数指数通过改变非线性频率影响振动响应;功能梯度圆锥壳呈弹簧渐硬非线性振动特性。  相似文献   

4.
Elastic solutions for axisymmetric rotating disks made of functionally graded material with variable thickness are presented. The material properties and disk thickness profile are assumed to be represented by two power-law distributions. In the case of hollow disk, based on the form of the power-law distribution for the mechanical properties of the constituent components and the thickness profile function, both analytical and semi-analytical solutions are given under free–free and fixed-free boundary conditions. For the solid disk, only semi-analytical solution is presented. The effects of the material grading index and the geometry of the disk on the stresses and displacements are investigated. It is found that a functionally graded rotating disk with parabolic or hyperbolic convergent thickness profile has smaller stresses and displacements compared with that of uniform thickness. It is seen that the maximum radial stress for the solid functionally graded disk with parabolic thickness profile is not at the centre like uniform thickness disk. Results of this paper suggest that a rotating functionally graded disk with parabolic concave or hyperbolic convergent thickness profile can be more efficient than the one with uniform thickness.  相似文献   

5.
This paper reports the results of an investigation into the vibration of functionally graded cylindrical shells with flowing fluid, embedded in an elastic medium, under mechanical and thermal loads. By considering rotary inertia, the first-order shear deformation theory (FSDT) and the fluid velocity potential, the dynamic equation of functionally graded cylindrical shells with flowing fluid is derived. Here, heat conduction equation along the thickness of the shell is applied to determine the temperature distribution and material properties are assumed to be graded distribution along the thickness direction according to a power-law in terms of the volume fractions of the constituents. The equations of eigenvalue problem are obtained by using a modal expansion method. In numerical examples, effects of material composition, thermal loading, static axial loading, flow velocity, medium stiffness and shell geometry parameters on the free vibration characteristics are described. The new features in this paper are helpful for the application and the design of functionally graded cylindrical shells containing fluid flow.  相似文献   

6.
This paper presents an analytical solution for the free vibration behavior of functionally graded carbon nanotube-reinforced composite(FG-CNTRC) doubly curved shallow shells with integrated piezoelectric layers. Here, the linear distribution of electric potential across the thickness of the piezoelectric layer and five different types of carbon nanotube(CNT) distributions through the thickness direction are considered. Based on the four-variable shear deformation refined shell theory, governing equations are obtained by applying Hamilton's principle. Navier's solution for the shell panels with the simply supported boundary condition at all four edges is derived. Several numerical examples validate the accuracy of the presented solution. New parametric studies regarding the effects of different material properties, shell geometric parameters, and electrical boundary conditions on the free vibration responses of the hybrid panels are investigated and discussed in detail.  相似文献   

7.
In this paper, three-dimensional free vibrations analysis of a four-parameter functionally graded fiber orientation cylindrical panel is presented. The panel is simply supported at the edges and assumed to have an arbitrary variation of fiber orientation in the radial direction. A generalization of the power-law distribution presented in literature is proposed. Symmetric and asymmetric fiber orientation profiles are studied in this paper. Suitable displacement functions that identically satisfy the boundary conditions at the simply supported edges are used to reduce the equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which can be solved by differential quadrature method to obtain the natural frequency. The main contribution of this work is to illustrate the influence of the power-law exponent, of the power-law distribution choice and of the choice of the four parameters on the natural frequencies of continuous grading fiber orientation cylindrical panels. Numerical results are presented for a cylindrical panel with arbitrary variation of fiber orientation in the shell’s thickness and compared with discrete laminates composite panels. It is shown maximum natural frequencies will be obtained by using symmetric fiber orientation profiles.  相似文献   

8.
A postbuckling analysis is presented for a functionally graded cylindrical panel of finite length subjected to axial compression in thermal environments. Material properties are assumed to be temperature dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The governing equations of a functionally graded cylindrical panel are based on Reddy’s higher order shear deformation shell theory with a von Kármán–Donnell-type of kinematic nonlinearity and including thermal effects. Two cases of the in-plane boundary conditions are considered. The nonlinear prebuckling deformations and initial geometric imperfections of the panel are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of functionally graded cylindrical panels under axial compression. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of axially loaded, perfect and imperfect, functional graded cylindrical panels with two constituent materials and under different sets of thermal environments. The influences played by temperature rise, volume fraction distributions, the character of in-plane boundary conditions, transverse shear deformation, panel geometric parameters, as well as initial geometric imperfections are studied.  相似文献   

9.
Problems of nonlinear cylindrical bending of sigmoid functionally graded plates in which material properties vary through the thickness are considered. The variation of the material properties follows two power-law distributions in terms of the volume fractions of constituents. The nonlinear strain-displacement relations in the von Kármán sense are used to study the effect of geometric nonlinearity. The governing equations are reduced to a linear differential equation with nonlinear boundary conditions, yielding a simple solution procedure. Numerical results are presented to show the effect of the material distribution on the deflections and stresses.  相似文献   

10.
This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials(FGMs). The pressure vessel is subject to axisymmetric mechanical and thermal loadings within a uniform magnetic field. The material properties of the FGM are considered as the power-law distribution along the thickness. Navier's equation, which is a second-order ordinary differential equation, is derived from the mechanical equilibrium equation with the consideration of the thermal stresses and the Lorentz force resulting from the magnetic field. The distributions of the displacement,strains, and stresses are determined by the exact solution to Navier's equation. Numerical results clarify the influence of the thermal loading, magnetic field, non-homogeneity constant, internal pressure, and angular velocity on the magneto-thermo-elastic response of the functionally graded spherical vessel. It is observed that these parameters have remarkable effects on the distributions of radial displacement, radial and circumferential strains, and radial and circumferential stresses.  相似文献   

11.
李婷  仲政  聂国隽 《力学季刊》2007,28(4):549-556
功能梯度材料是一种新型材料,其结构分析已成为当今力学研究的热点。本文对一种特殊梯度分布的功能梯度材料圆柱壳进行了二维精确分析。从弹性力学平面应变问题的基本方程出发,引入应力函数,导出功能梯度材料圆柱壳受静载作用下的控制微分方程。假设材料的杨氏模量沿半径方向呈幂函数分布,泊松比为常数,利用分离变量法,导出了简支边界情况下功能梯度圆柱壳的精确解。通过算例分析了不同梯度变化时,功能梯度圆柱壳内的应力和位移变化规律。计算结果表明不同梯度分布的圆柱壳结构中的应力、位移沿厚度方向的变化规律是不同的,有时甚至差别很大。因此对于材料性质梯度变化的功能梯度材料圆柱壳,必须针对其自身特点,建立相应的理论分析模型。  相似文献   

12.
功能梯度夹层双曲壳结构广泛应用在航空航天、海洋工程等领域中,对于该类结构的动力学特性研究非常重要。本文以热环境下功能梯度夹层双曲壳为研究对象,在三阶剪切变形理论的基础上,考虑横向拉伸作用的影响提出了一种新的位移场,假设材料的物性参数与温度有关,且沿厚度方向表示为幂律函数。利用Hamilton原理得到简支边界条件下功能梯度夹层双曲壳三维振动系统动力学方程,利用Navier法求得两种不同夹层类型的系统固有频率。研究了几何物理参数和温度场对功能梯度夹层双曲壳自由振动固有频率的影响。  相似文献   

13.
Thermoelastic buckling behavior of thick rectangular plate made of functionally graded materials is investigated in this article. The material properties of the plate are assumed to vary continuously through the thickness of the plate according to a power-law distribution. Three types of thermal loading as uniform temperature raise, nonlinear and linear temperature distribution through the thickness of plate are considered. The coupled governing stability equations are derived based on the Reddy’s higher-order shear deformation plate theory using the energy method. The resulted stability equations are decoupled and solved analytically for the functionally graded rectangular plates with two opposite edges simply supported subjected to different types of thermal loading. A comparison of the present results with those available in the literature is carried out to establish the accuracy of the presented analytical method. The influences of power of functionally graded material, plate thickness, aspect ratio, thermal loading conditions and boundary conditions on the critical buckling temperature of aluminum/alumina functionally graded rectangular plates are investigated and discussed in detail. The critical buckling temperatures of thick functionally graded rectangular plates with various boundary conditions are reported for the first time and can be served as benchmark results for researchers to validate their numerical and analytical methods in the future.  相似文献   

14.
In the present study, a vibration frequency analysis of a bi-layered cylindrical shell composed of two independent functionally graded layers is presented. The thickness of the shell layers is assumed to be equal and constant. Material properties of the constituents of bi-layered functionally graded cylindrical shell are assumed to vary smoothly and continuously through the thickness of the layers of the shell and are controlled by volume fraction power law distribution. The expressions for strain–displacement and curvature–displacement relationships are utilized from Love’s first approximation linear thin shell theory. The versatile Rayleigh–Ritz approach is employed to formulate the frequency equations in the form of eigenvalue problem. Influence of material distribution in the two functionally graded layers of the cylindrical shells is investigated on shell natural frequencies for various shell parameters with simply supported end conditions. To check the validity, accuracy and efficiency of the present methodology, results obtained are compared with those available in the literature.  相似文献   

15.
Coupled thermoelasticity of functionally graded cylindrical shells   总被引:2,自引:0,他引:2  
The coupled thermoelastic response of a functionally graded circular cylindrical shell is studied. The coupled thermoelastic and the energy equations are simultaneously solved for a functionally graded axisymmetric cylindrical shell subjected to thermal shock load. A second-order shear deformation shell theory that accounts for the transverse shear strains and rotations is considered. Including the thermo-mechanical coupling and rotary inertia, a Galerkin finite element formulation in space domain and the Laplace transform in time domain are used to formulate the problem. The inverse Laplace transform is obtained using a numerical algorithm. The shell is graded through the thickness assuming a volume fraction of metal and ceramic, using a power law distribution. The results are validated with the known data in the literature.  相似文献   

16.
As a first endeavor, the three-dimensional free vibration and vibrational displacements characteristics of two-dimensional functionally graded fiber-reinforced (2-D FGFR) curved panels with different boundary conditions are presented. This paper presents a novel 2-D six-parameter power-law distribution for fiber volume fractions of 2-D FGFR that gives designers a powerful tool for design flexible of structures under multi-functional requirements. Various material profiles in two radial and axial directions can be illustrated using the six-parameter power-law distribution. The study is carried out based on the three-dimensional, linear and small strain elasticity theory. In this work, orthotropic panel is assumed to be simply supported at one pair of opposite edges and arbitrary boundary conditions at the other edges such that trigonometric functions expansion can be used to satisfy the boundary conditions precisely at simply supported edges. The 2-D generalized differential quadrature method (GDQM) as an efficient and accurate numerical tool is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made with the available solutions for FGM curved panels. Results indicate by using the 2-D six-parameter power-law distribution, it is possible to study the influence of different kinds of two-directional material profiles including symmetric and classic on the natural frequencies and modal displacements of a 2-D FGFR panel. Furthermore, maximum amplitude and uniformity of modal displacements distributions can be modified to a required manner by selecting suitable different parameters of 2-D power-law distribution and several various volume fractions profiles in two directions.  相似文献   

17.
Thermal buckling behavior of cylindrical shell made of functionally graded material(FGM) is studied. The material constituents are composed of ceramic and metal.The material properties across the shell thickness are assumed to be graded according to a simple power law distribution in terms of the volume fraction rule of mixtures. Based on the Donnell shell theory, a system of dimensionless partial differential equations of buckling in terms of displacement components is derived. The method of separation of variables is used to transform the governing equations to ordinary differential equations(ODEs). A shooting method is used to search for the numerical solutions of the differential equations under two types of boundary conditions. Effects of the power law index, the dimensionless geometrical parameters, and the temperature ratio on the critical buckling temperature are discussed in detail.  相似文献   

18.
In this paper, a novel size-dependent functionally graded(FG) cylindrical shell model is developed based on the nonlocal strain gradient theory in conjunction with the Gurtin-Murdoch surface elasticity theory. The new model containing a nonlocal parameter, a material length scale parameter, and several surface elastic constants can capture three typical types of size effects simultaneously, which are the nonlocal stress effect, the strain gradient effect, and the surface energy effects. With the help of Hamilton's principle and first-order shear deformation theory, the non-classical governing equations and related boundary conditions are derived. By using the proposed model, the free vibration problem of FG cylindrical nanoshells with material properties varying continuously through the thickness according to a power-law distribution is analytically solved, and the closed-form solutions for natural frequencies under various boundary conditions are obtained. After verifying the reliability of the proposed model and analytical method by comparing the degenerated results with those available in the literature, the influences of nonlocal parameter, material length scale parameter, power-law index, radius-to-thickness ratio, length-to-radius ratio, and surface effects on the vibration characteristic of functionally graded cylindrical nanoshells are examined in detail.  相似文献   

19.
Thermal instability of shallow spherical shells made of functionally graded material (FGM) and surface-bonded piezoelectric actuators is studied in this paper. The governing equations are based on the first order theory of shells and the Sanders nonlinear kinematics equations. It is assumed that the property of the functionally graded materials vary continuously through the thickness of the shell according to a power law distribution of the volume fraction of the constituent materials. The constituent material of the functionally graded shell is assumed to be a mixture of ceramic and metal. The analytical solutions are obtained for three types of thermal loadings and constant applied actuator voltage. Results for simpler states are validated with the known data in literature.  相似文献   

20.
The Generalized Differential Quadrature (GDQ) procedure is developed for the free vibration analysis of complete parabolic shells of revolution and parabolic shell panels. The First-order Shear Deformation Theory (FSDT) is used to analyze the above moderately thick structural elements. The treatment is conducted within the theory of linear elasticity, when the material behaviour is assumed to be homogeneous and isotropic. The governing equations of motion, written in terms of internal resultants, are expressed as functions of five kinematic parameters, by using the constitutive and kinematic relationships. The solution is given in terms of generalized displacement components of the points lying on the middle surface of the shell. The discretization of the system by means of the Differential Quadrature (DQ) technique leads to a standard linear eigenvalue problem, where two independent variables are involved. The results are obtained taking the meridional and circumferential co-ordinates into account, without using the Fourier modal expansion methodology. Several examples of parabolic shell elements are presented to illustrate the validity and the accuracy of GDQ method. Numerical solutions are compared with the ones obtained using commercial programs such as Abaqus, Ansys, Femap/Nastran, Straus, Pro/Mechanica. Very good agreement is observed. Furthermore, the convergence rate of natural frequencies is shown to be very fast and the stability of the numerical methodology is very good. The accuracy of the method is sensitive to the number of sampling points used, to their distribution and to the boundary conditions. Different typologies of non-uniform grid point distributions are considered. The effect of the distribution choice of sampling points on the accuracy of GDQ solution is investigated. New numerical results are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号