首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The paper's leitmotiv is condensed in one word: robustness. This is a real hindrance for the successful implementation of any multigrid scheme for solving the Navier–Stokes set of equations. In this paper, many hints are given to improve this issue. Instead of looking for the best possible speed‐up rate for a particular set of problems, at a given regime and in a given condition, the authors propose some ideas pursuing reasonable speed‐up rates in any situation. In a previous paper, the authors presented a multigrid method for solving the incompressible turbulent RANS equations, with particular care in the robustness and flexibility of the solution scheme. Here, these concepts are further developed and extended to compressible laminar and turbulent flows. This goal is achieved by introducing a non‐linear multigrid scheme for compressible laminar (NS equations) and turbulent flow (RANS equations), taking benefit of a convenient master–slave implementation strategy. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
This paper describes a method for simulation of viscous flows with a free surface around realistic hull forms with a transom, which has been developed based on a FINFLO RANS solver with a moving mesh. A dry‐transom model is proposed and implemented for the treatment of flows off the transom. The bulk RANS flow with the artificial compressibility is solved by a cell‐centred finite volume multigrid scheme and the free surface deformed by wave motions is tracked by satisfying the kinematic and dynamic free‐surface boundary conditions on the actual location of the surface. The effects of turbulence on flows are evaluated with the Baldwin–Lomax turbulence model without a wall function. A test case is modern container ship model with a transom, the Hamburg Test Case. The calculated results are validated and they agree well with the measured results in terms of the free‐surface waves and the total resistance coefficient. Furthermore, the numerical solutions successfully captured many important features of the complicated interaction of the free surface with viscous flows around transom stern ships. In addition, the convergence performance and the grid refinement studies are also investigated. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents the calculated results for three classes of typical modern ships in modelling of ship‐generated waves. Simulations of turbulent free‐surface flows around ships are performed in a numerical water tank, based on the FINFLO‐RANS SHIP solver developed at Helsinki University of Technology. The Reynolds‐averaged Navier–Stokes (RANS) equations with the artificial compressibility and the non‐linear free‐surface boundary conditions are discretized by means of a cell‐centred finite‐volume scheme. The convergence performance is improved with the multigrid method. A free surface is tracked using a moving mesh technology, in which the non‐linear free‐surface boundary conditions are given on the actual location of the free surface. Test cases recommended are a container ship, a US Navy combatant and a tanker. The calculated results are compared with the experimental data available in the literature in terms of the wave profiles, wave pattern, and turbulent flow fields for two turbulence models, Chien's low Reynolds number k–εmodel and Baldwin–Lomax's model. Furthermore, the convergence performance, the grid refinement study and the effect of turbulence models on the waves have been investigated. Additionally, comparison of two types of the dynamic free‐surface boundary conditions is made. Copyright © 2003 John Wiley& Sons, Ltd.  相似文献   

4.
We present a generalised treatment of the wall boundary conditions for RANS computation of turbulent flows and heat transfer. The method blends the integration up to the wall (ItW) with the generalised wall functions (GWF) that include non-equilibrium effects. Wall boundary condition can thus be defined irrespective of whether the wall-nearest grid point lies within the viscous sublayer, in the buffer zone, or in the fully turbulent region. The computations with fine and coarse meshes of a steady and pulsating flow in a plane channel, in flow behind a backward-facing step and in a round impinging jet using the proposed compound wall treatment (CWT) are all in satisfactory agreement with the available experiments and DNS data. The method is recommended for computations of industrial flows in complex domains where it is difficult to generate a computational grid that will satisfy a priori either the ItW or WF prerequisites.  相似文献   

5.
A numerical algorithm for the steady state solution of three‐dimensional incompressible flows is presented. A preconditioned time marching scheme is applied to the conservative form of the governing equations. The preconditioning matrix multiplies the time derivatives of the system and circumvents the eigenvalue‐caused stiffness at low speed. The formulation is suitable for constant density flows and for flows where the density depends on non‐passive scalars, such as in low‐speed combustion applications. The k–ε model accounts for turbulent transport effects. A cell‐centred finite volume formulation with a Runge–Kutta time stepping scheme for the primitive variables is used. Second‐order spatial accuracy is achieved by developing for the preconditioned system an approximate Riemann solver with MUSCL reconstruction. A multi‐grid technique coupled with local time stepping and implicit residual smoothing is used to accelerate the convergence to the steady state solution. The convergence behaviour and the validation of the predicted solutions are examined for laminar and turbulent constant density flows and for a turbulent non‐premixed flame simulated by a presumed probability density function (PDF) model. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
A hybrid unsteady Reynolds-averaged numerical simulation (U-RANS) and probability density function (PDF) method is developed for turbulent non-reactive and reactive flows. The resulting modeled equations are solved by a consistent hybrid finite volume and Lagrangian Monte-Carlo particle method. Both turbulent non-reactive and reactive flows in a rectangular channel containing a triangular-shaped bluff-body are simulated. One-step and two-step mechanisms for propane/air combustion are used for the reactive case. The time-averaged results are compared with both experimental data and numerical results from the literature using large eddy simulation (LES) and steady RANS. The results of the present method are in good agreement with the experimental data, and they improve the numerical results available in the literature.  相似文献   

7.
We present an original timesaving joint RANS/LES approach to simulate turbulent premixed combustion. It is intended mainly for industrial applications where LES may not be practical. It is based on successive RANS/LES numerical modelling, where turbulent characteristics determined from RANS simulations are used in LES equations for estimation of the subgrid chemical source and viscosity. This approach has been developed using our TFC premixed combustion model, which is based on a generalization of the Kolmogorov’s ideas. We assume existence of small-scale statistically equilibrium structures not only of turbulence but also of the reaction zones. At the same time, non-equilibrium large-scale structures of reaction sheets and turbulent eddies are described statistically by model combustion and turbulence equations in RANS simulations or follow directly without modelling in LES. Assumption of small-scale equilibrium gives an opportunity to express the mean combustion rate (controlled by small-scale coupling of turbulence and chemistry) in the RANS and LES sub-problems in terms of integral or subgrid parameters of turbulence and the chemical time, i.e. the definition of the reaction rate is similar to that of the mean dissipation rate in turbulence models where it is expressed in terms of integral or subgrid turbulent parameters. Our approach therefore renders compatible the combustion and turbulent parts of the RANS and LES sub-problems and yields reasonable agreement between the RANS and averaged LES results. Combining RANS simulations of averaged fields with LES method (and especially coupled and acoustic codes) for simulation of corresponding nonstationary process (and unsteady combustion regimes) is a promising strategy for industrial applications. In this work we present results of simulations carried out employing the joint RANS/LES approach for three examples: High velocity premixed combustion in a channel, combustion in the shear flow behind an obstacle and the impinging flame (a premixed flame attached to an obstacle).  相似文献   

8.
Results are reported of an unsteady Reynolds‐averaged Navier–Stokes (RANS) method for simulation of the boundary layer and wake and wave field for a surface ship advancing in regular head waves, but restrained from body motions. Second‐order finite differences are used for both spatial and temporal discretization and a Poisson equation projection method is used for velocity–pressure coupling. The exact kinematic free‐surface boundary condition is solved for the free‐surface elevation using a body‐fitted/free‐surface conforming grid updated in each time step. The simulations are for the model problem of a Wigley hull advancing in calm water and in regular head waves. Verification and validation procedures are followed, which include careful consideration of both simulation and experimental uncertainties. The steady flow results are comparable to other steady RANS methods in predicting resistance, boundary layer and wake, and free‐surface effects. The unsteady flow results cover a wide range of Froude number, wavelength, and amplitude for which first harmonic amplitude and phase force and moment experimental data are available for validation along with frequency domain, linear potential flow results for comparisons. The present results, which include the effects of turbulent flow and non‐linear interactions, are in good agreement with the data and overall show better capability than the potential flow results. The physics of the unsteady boundary layer and wake and wave field response are explained with regard to frequency of encounter and seakeeping theory. The results of the present study suggest applicability for additional complexities such as practical ship geometry, ship motion, and maneuvering in arbitrary ambient waves. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
Hybrid models have found widespread applications for simulation of wall‐bounded flows at high Reynolds numbers. Typically, these models employ Reynolds‐averaged Navier–Stokes (RANS) and large eddy simulation (LES) in the near‐body and off‐body regions, respectively. A number of coupling strategies between the RANS and LES regions have been proposed, tested, and applied in the literature with varying degree of success. Linear eddy‐viscosity models (LEVM) are often used for the closure of turbulent stress tensor in RANS and LES regions. LEVM incorrectly predicts the anisotropy of Reynolds normal stress at the RANS‐LES interface region. To overcome this issue, use of non‐linear eddy‐viscosity models (NLEVM) have started receiving attention. In this study, a generic non‐linear blended modeling framework for performing hybrid simulations is proposed. Flow over the periodic hills is used as the test case for model evaluation. This case is chosen due to complex flow physics with simplified geometry. Analysis of the simulations suggests that the non‐linear hybrid models show a better performance than linear hybrid models. It is also observed that the non‐linear closures are less sensitive to the RANS‐LES coupling and grid resolution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Xiao and Jenny (2012) proposed an interesting hybrid LES/RANS method in which they use two solvers and solve the RANS and LES equations in the entire computational domain. In the present work this method is simplified and used as a hybrid RANS-LES method, a wall-modeled LES. The two solvers are employed in the entire domain. Near the walls, the flow is governed by the steady RANS solver; drift terms are added to the DES equations to ensure that the time-averaged DES fields agree with the steady RANS field. Away from the walls, the flow is governed by the DES solver; in this region, the RANS field is set to the time-averaged LES field. The disadvantage of traditional DES models is that the RANS models in the near-wall region – which originally were developed and tuned for steady RANS – are used as URANS models where a large part of the turbulence is resolved. In the present method – where steady RANS is used in the near-wall region – the RANS turbulence models are used in a context for which they were developed. In standard DES methods, the near-wall accuracy can be degraded by the unsteady agitation coming from the LES region. It may in the present method be worth while to use an accurate, advanced RANS model. The EARSM model is used in the steady RANS solver. The new method is called NZ S-DES . It is found to substantially improve the predicting capability of the standard DES. A great advantage of the new model is that it is insensitive to the location of the RANS-LES interface.  相似文献   

11.
A solver is developed for time-accurate computations of viscous flows based on the conception of Newton‘s method. A set of pseudo-time derivatives are added into governing equations and the discretized system is solved using GMRES algorithm. Due to some special properties of GMRES algorithm, the solution procedure for unsteady flows could be regarded as a kind of Newton iteration. The physical-time derivatives of governing equations are discretized using two different approaches, I.e., 3-point Euler backward, and Crank-Nicolson formulas, both with 2nd-order accuracy in time but with different truncation errors. The turbulent eddy viscosity is calculated by using a version of Spalart~Allmaras one-equation model modified by authors for turbulent flows. Two cases of unsteady viscous flow are investigated to validate and assess the solver, I.e., low Reynolds number flow around a row of cylinders and transonic bi-circular-arc airfoil flow featuring the vortex shedding and shock buffeting problems, respectively. Meanwhile, comparisons between the two schemes of timederivative discretizations are carefully made. It is illustrated that the developed unsteady flow solver shows a considerable efficiency and the Crank-Nicolson scheme gives better results compared with Euler method.  相似文献   

12.
Efficient and robust solution strategies are developed for discontinuous Galerkin (DG) discretization of the Navier-Stokes (NS) and Reynolds-averaged NS (RANS) equations on structured/unstructured hybrid meshes. A novel line-implicit scheme is devised and implemented to reduce the memory gain and improve the computational eificiency for highly anisotropic meshes. A simple and effective technique to use the mod- ified Baldwin-Lomax (BL) model on the unstructured meshes for the DC methods is proposed. The compact Hermite weighted essentially non-oscillatory (HWENO) limiters are also investigated for the hybrid meshes to treat solution discontinuities. A variety of compressible viscous flows are performed to examine the capability of the present high- order DG solver. Numerical results indicate that the designed line-implicit algorithms exhibit weak dependence on the cell aspect-ratio as well as the discretization order. The accuracy and robustness of the proposed approaches are demonstrated by capturing com- plex flow structures and giving reliable predictions of benchmark turbulent problems.  相似文献   

13.
In this work, the finite point method is applied to the solution of high‐Reynolds compressible viscous flows. The aim is to explore this important field of applications focusing on two main aspects: the easiness and automation of the meshless discretization of viscous layers and the construction of a robust numerical approximation in the highly stretched clouds of points resulting in such domain areas. The flow solution scheme adopts an upwind‐biased scheme to solve the averaged Navier–Stokes equations in conjunction with an algebraic turbulence model. The numerical applications presented involve different attached boundary layer flows and are intended to show the performance of the numerical technique. The results obtained are satisfactory and indicative of the possibilities to extend the present meshless technique to more complex flow problems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A method of efficiently computing turbulent compressible flow over complex two-dimensional configurations is presented. The method makes use of fully unstructured meshes throughout the entire flow field, thus enabling the treatment of arbitrarily complex geometries and the use of adaptive meshing techniques throughout both viscous and inviscid regions of the flow field. Mesh generation is based on a locally mapped Delaunay technique in order to generate unstructured meshes with highly stretched elements in the viscous regions. The flow equations are discretized using a finite element Navier-Stokes solver, and rapid convergence to steady state is achieved using an unstructured multigrid algorithm. Turbulence modelling is performed using an inexpensive algebraic model, implemented for use on unstructured and adaptive meshes. Compressible turbulent flow solutions about multiple-element aerofoil geometries are computed and compared with experimental data.  相似文献   

15.
采用相同拓扑结构和相近网格质量的4套网格和5种湍流模型,对全附体Suboff潜艇粘性流场进行RANS模拟,分析了网格密度、节点空间分布规律和湍流模型对计算精度的影响,详细校验了其力积分量、速度场量和涡量特征。结果表明:网格密度最大的G4网格(140万)计算精度最高,总阻力较实验值误差为0.723%,其采用SST湍流模型时最优。计算得到的压力系数和剪切应力系数分布均与实验值吻合很好;桨盘面速度等值线分布计算精度与文献相当,轴向相对速度0.9以上的计算半径稍大于实验值,其余半径与实验吻合较好;桨盘面上0.25倍半径处速度分量沿周向分布计算精度较文献高,轴向分量与实验值吻合较好,径向分量峰值稍小于实验值,但峰值所处周向位置与实验值一致。成功捕捉到了附体端面绕流诱导对旋涡、附体叶根截面下游处项链形涡对、尾翼端面尾缘上方附着涡蹄、附体马蹄涡系、尾翼截面通道流体挤压作用诱导涡以及桨盘面涡量汇集的潜艇涡量场特征,且围壳端面绕流诱导对旋涡沿流动方向持续稳定,不影响桨盘面涡量场,均与文献中由大涡模拟模拟得到的定性结论一致。研究表明,在网格密度较大、节点分布合理、网格质量较高、湍流模型选取适当和壁面函数使用有效的条件下,RANS模拟潜艇粘性流场的场量和涡量特征同样具有很高的计算精度,能够在工程应用中有力支撑新型艇型设计与性能分析。  相似文献   

16.
We present a novel approach to hybrid Reynolds-averaged Navier-Stokes (RANS)/ large eddy simulation (LES) wall modeling based on function enrichment, which overcomes the common problem of the RANS-LES transition and enables coarse meshes near the boundary. While the concept of function enrichment as an efficient discretization technique for turbulent boundary layers has been proposed in an earlier article by Krank & Wall (A new approach to wall modeling in LES of incompressible flow via function enrichment. J Comput Phys. 2016;316:94-116), the contribution of this work is a rigorous derivation of a new multiscale turbulence modeling approach and a corresponding discontinuous Galerkin discretization scheme. In the near-wall area, the Navier-Stokes equations are explicitly solved for an LES and a RANS component in one single equation. This is done by providing the Galerkin method with an independent set of shape functions for each of these two methods; the standard high-order polynomial basis resolves turbulent eddies, where the mesh is sufficiently fine and the enrichment automatically computes the ensemble-averaged flow if the LES mesh is too coarse. As a result of the derivation, the RANS model is applied solely to the RANS degrees of freedom, which effectively prevents the typical issue of a log-layer mismatch in attached boundary layers. As the full Navier-Stokes equations are solved in the boundary layer, spatial refinement gradually yields wall-resolved LES with exact boundary conditions. Numerical tests show the outstanding characteristics of the wall model regarding grid independence, superiority compared to equilibrium wall models in separated flows, and achieve a speed-up by two orders of magnitude compared to wall-resolved LES.  相似文献   

17.
In this paper, we describe an implicit hybrid finite volume (FV)/element (FE) incompressible Navier–Stokes solver for turbulent flows based on the Spalart–Allmaras detached eddy simulation (SA‐DES). The hybrid FV/FE solver is based on the segregated pressure correction or projection method. The intermediate velocity field is first obtained by solving the original momentum equations with the matrix‐free implicit cell‐centered FV method. The pressure Poisson equation is solved by the node‐based Galerkin FE method for an auxiliary variable. The auxiliary variable is closely related to the real pressure and is used to update the velocity field and the pressure field. We store the velocity components at cell centers and the auxiliary variable at vertices, making the current solver a staggered‐mesh scheme. The SA‐DES turbulence equation is solved after the velocity and the pressure fields have been updated at the end of each time step. The same matrix‐free FV method as the one used for momentum equations is used to solve the turbulence equation. The turbulence equation provides the eddy viscosity, which is added to the molecular viscosity when solving the momentum equation. In our implementation, we focus on the accuracy, efficiency and robustness of the SA‐DES model in a hybrid flow solver. This paper will address important implementation issues for high‐Reynolds number flows where highly stretched elements are typically used. In addition, some aspects of implementing the SA‐DES model will be described to ensure the robustness of the turbulence model. Several numerical examples including a turbulent flow past a flat plate and a high‐Reynolds number flow around a high angle‐of‐attack NACA0015 airfoil will be presented to demonstrate the accuracy and efficiency of our current implementation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
In this article, we present a discontinuous Galerkin (DG) method designed to improve the accuracy and efficiency of steady solutions of the compressible fully coupled Reynolds‐averaged Navier–Stokes and k ? ω turbulence model equations for solving all‐speed flows. The system of equations is iterated to steady state by means of an implicit scheme. The DG solution is extended to the incompressible limit by implementing a low Mach number preconditioning technique. A full preconditioning approach is adopted, which modifies both the unsteady terms of the governing equations and the dissipative term of the numerical flux function by means of a new preconditioner, on the basis of a modified version of Turkel's preconditioning matrix. At sonic speed the preconditioner reduces to the identity matrix thus recovering the non‐preconditioned DG discretization. An artificial viscosity term is added to the DG discretized equations to stabilize the solution in the presence of shocks when piecewise approximations of order of accuracy higher than 1 are used. Moreover, several rescaling techniques are implemented in order to overcome ill‐conditioning problems that, in addition to the low Mach number stiffness, can limit the performance of the flow solver. These approaches, through a proper manipulation of the governing equations, reduce unbalances between residuals as a result of the dependence on the size of elements in the computational mesh and because of the inherent differences between turbulent and mean‐flow variables, influencing both the evolution of the Courant Friedrichs Lewy (CFL) number and the inexact solution of the linear systems. The performance of the method is demonstrated by solving three turbulent aerodynamic test cases: the flat plate, the L1T2 high‐lift configuration and the RAE2822 airfoil (Case 9). The computations are performed at different Mach numbers using various degrees of polynomial approximations to analyze the influence of the proposed numerical strategies on the accuracy, efficiency and robustness of a high‐order DG solver at different flow regimes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The finite volume method with exact two‐phase Riemann problems (FIVER) is a two‐faceted computational method for compressible multi‐material (fluid–fluid, fluid–structure, and multi‐fluid–structure) problems characterized by large density jumps, and/or highly nonlinear structural motions and deformations. For compressible multi‐phase flow problems, FIVER is a Godunov‐type discretization scheme characterized by the construction and solution at the material interfaces of local, exact, two‐phase Riemann problems. For compressible fluid–structure interaction (FSI) problems, it is an embedded boundary method for computational fluid dynamics (CFD) capable of handling large structural deformations and topological changes. Originally developed for inviscid multi‐material computations on nonbody‐fitted structured and unstructured grids, FIVER is extended in this paper to laminar and turbulent viscous flow and FSI problems. To this effect, it is equipped with carefully designed extrapolation schemes for populating the ghost fluid values needed for the construction, in the vicinity of the fluid–structure interface, of second‐order spatial approximations of the viscous fluxes and source terms associated with Reynolds averaged Navier–Stokes (RANS)‐based turbulence models and large eddy simulation (LES). Two support algorithms, which pertain to the application of any embedded boundary method for CFD to the robust, accurate, and fast solution of FSI problems, are also presented in this paper. The first one focuses on the fast computation of the time‐dependent distance to the wall because it is required by many RANS‐based turbulence models. The second algorithm addresses the robust and accurate computation of the flow‐induced forces and moments on embedded discrete surfaces, and their finite element representations when these surfaces are flexible. Equipped with these two auxiliary algorithms, the extension of FIVER to viscous flow and FSI problems is first verified with the LES of a turbulent flow past an immobile prolate spheroid, and the computation of a series of unsteady laminar flows past two counter‐rotating cylinders. Then, its potential for the solution of complex, turbulent, and flexible FSI problems is also demonstrated with the simulation, using the Spalart–Allmaras turbulence model, of the vertical tail buffeting of an F/A‐18 aircraft configuration and the comparison of the obtained numerical results with flight test data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
An implicit multigrid‐driven algorithm for two‐dimensional incompressible laminar viscous flows has been coupled with a solution adaptation method and a mesh movement method for boundary movement. Time‐dependent calculations are performed implicitly by regarding each time step as a steady‐state problem in pseudo‐time. The method of artificial compressibility is used to solve the flow equations. The solution mesh adaptation method performs local mesh refinement using an incremental Delaunay algorithm and mesh coarsening by means of edge collapse. Mesh movement is achieved by modeling the computational domain as an elastic solid and solving the equilibrium equations for the stress field. The solution adaptation method has been validated by comparison with experimental results and other computational results for low Reynolds number flow over a shedding circular cylinder. Preliminary validation of the mesh movement method has been demonstrated by a comparison with experimental results of an oscillating airfoil and with computational results for an oscillating cylinder. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号