首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This is the first of two articles intended to develop, apply and verify a new method for averaging the momentum and mass transport equations for turbulence. The new method is based on Gaussian filtering in both the spatial and temporal domains. Application is made to the problem of momentum and scalar transport in a one-dimensional transient Burgers' flow field. No actual calculations, with the averaged equations, are presented in this paper. However, an ‘exact’ solution of the one-dimensional flow situation is presented as an economical tool for verifying the performance of the different turbulence models. In the second paper calculations are performed with the averaged one-dimensional equations on coarse grids, and the results are compared to the exact or fully simulated data with a statistical verification procedure.  相似文献   

2.
In this second paper, the averaging rules presented in Part 1 are employed in order to develop a general macroscopic balance equation and particular equations for mass, mass of a component, momentum and energy, all of a phase in a porous medium domain. These balance equations involve averaged fluxes. Then macroscopic equations are developed for advective, dispersive and diffusive fluxes, all in terms of averaged state variables of the system. These are combined with the macroscopic balance equations to yield field equations that serve as the core of the mathematical models that describe the transport of extensive quantities in a porous medium domain. It is shown that the methodology of averaging leads to a better understanding of the effective stress concept employed in dealing with transport phenomena in deformable porous media.  相似文献   

3.
The macroscopic governing equations of a compressible multicomponents flow with non-uniform viscosity and with mass withdrawal (due to heterogeneous reactions) in a porous medium are developed. The method of volume averaging was used to transform local (or microscopic) governing equations into averaged (or macroscopic) governing equations. The impacts of compressibility, non-uniform viscosity, and mass withdrawal on the form of the averaged equations and on the value of the macroscopic transport coefficients were investigated. The results showed that the averaged mass conservation equation is significantly affected by mass withdrawal when a specific criterion on the size of the domain is respected. The results also showed that the form of the averaged momentum equations is not affected by mass withdrawal, by compressibility effects or by non-uniform viscosity, provided that the Reynolds number at the pore level is small. Nonetheless, the velocity field is affected by the heterogeneous reaction via the averaged mass conservation equation, and also by viscosity variations due to the presence of the volume-averaged viscosity (which value changes with position) in the averaged momentum equations. A new closure variable definition was proposed to formulate the closure problem, which avoided the need to solve an integro-differential equation in the closure problem. This formulation was used to show that the permeability tensor only depends on the geometry of the porous medium. In other words, that tensor is independent on whether the fluid is compressible/incompressible, has uniform/non-uniform viscosities, and whether mass withdrawal due to heterogeneous reactions is present/absent.  相似文献   

4.
5.
Spray flow calculations are usually based upon equations that have been developed by averaging droplet properties locally throughout the flow field. Presently, standard procedure for LES (large-eddy simulations) is to average these averaged equations once again to filter the short-length-scale fluctuations. In this paper, the theoretical foundations for the averaged spray equations are examined; then the volume-averaging process for LES and the volume-averaging process for two-phase flows are unified for the analysis of turbulent, two-phase flows. Comments are provided on the relationship between the averaging volume and the computational-cell volume. This paper provides generality to the weighting-function choice in the averaging process and precision to the definition of the volume over which the averaging is performed. New flux terms that result from the averaging process and appear in the governing averaged partial differential equations are identified and their modelling is discussed. Situations are identified where sufficient stratification of properties on the scale smaller than the averaging volume leads to the significance of these quantities. Evolution equations for averaged entropy and averaged vorticity are developed. The relationship amongst the curl of the average gas-phase velocity, the average of the gas-phase-velocity curl, and the rotation of the discrete droplets or particles is established. The needs and challenges for sub-grid modelling to account for small-vortex/droplet interactions are presented. Applications to spray combustion are discussed.  相似文献   

6.
Due to the wide range of spatial scales and the complex features associated to fluid/solid and solid/solid interactions in a dense fluidized bed, the system can be studied at different length scales, namely micro, meso and macro. In this work, we select a flow configuration relevant of a homogeneous liquid/solid fluidization and compare computed results from Particle Resolved Simulation (PRS) with those from locally averaged Euler/Lagrange simulation. PRS at the micro-scale is carried out by a parallel Distributed Lagrange Multiplier (DLM) solver in the framework of fictitious domain methods (Wachs, 2011a, 2015). For meso-scale simulations, the set of mass and momentum conservation equations is averaged in control volumes encompassing few particles and momentum transfer between the two phases is modeled using appropriate drag laws. Both methods are coupled to a Discrete Element Method (DEM) combined with a soft-sphere contact model to solve the Newton–Euler equations with collisions for the particles in a Lagrangian framework (Wachs et al., 2012). A test case of intermediate size with 2000 spheres is chosen as a sensible compromise between size limitations of the meso-scale model for an appropriate averaging process and computational resources required to run micro-scale simulations. These two datasets yield new insight on momentum transfer at different spatial scales in the flow, and question the validity of certain approximations adopted in the meso-scale model. Results demonstrate an acceptable agreement between the micro- and meso-scale predictions on integral measures as pressure drop and bed height. Investigating more detailed features of the flow, it has been shown that particles fluctuations are considerably suppressed in meso-scale simulations and in particular the particles transverse motion is underestimated, regardless of the selected drag law. The origin of these dependencies is carefully investigated by reconstructing the closure laws based on PRS results and comparing them to the closure laws proposed in the literature.  相似文献   

7.
We consider colloidal dynamics and single-phase fluid flow within a saturated porous medium in two space dimensions. A new approach in modeling pore clogging and porosity changes on the macroscopic scale is presented. Starting from the pore scale, transport of colloids is modeled by the Nernst?CPlanck equations. Here, interaction with the porous matrix due to (non-)DLVO forces is included as an additional transport mechanism. Fluid flow is described by incompressible Stokes equations with interaction energy as forcing term. Attachment and detachment processes are modeled by a surface reaction rate. The evolution of the underlying microstructure is captured by a level set function. The crucial point in completing this model is to set up appropriate boundary conditions on the evolving solid?Cliquid interface. Their derivation is based on mass conservation. As a result of an averaging procedure by periodic homogenization in a level set framework, on the macroscale we obtain Darcy??s law and a modified averaged convection?Cdiffusion equation with effective coefficients due to the evolving microstructure. These equations are supplemented by microscopic cell problems. Time- and space-dependent averaged coefficient functions explicitly contain information of the underlying geometry and also information of the interaction potential. The theoretical results are complemented by numerical computations of the averaged coefficients and simulations of a heterogeneous multiscale scenario. Here, we consider a radially symmetric setting, i.e., in particular we assume a locally periodic geometry consisting of circular grains. We focus on the interplay between attachment and detachment reaction, colloidal interaction forces, and the evolving microstructure. Our model contributes to the understanding of the effects and processes leading to porosity changes and pore clogging from a theoretical point of view.  相似文献   

8.
In this paper, the complexification-averaging (CX-A) method for multi-DOF nonlinear vibratory systems is rederived in a new way based upon the averaged Lagrangian. The complex variables are introduced to represent the original displacements and velocities, and then the fast–slow decomposition of the complex variables is made. The time averaging of the Lagrangian over the fast variables is performed. Two different expressions for the kinetic energy are presented, and this results in two schemes for deriving the governing equations of the slow variables. For the scheme I, through the order analysis of the derivatives of the slow variables, it is shown that the second-order terms appeared in the averaged Lagrangian can be omitted, and thus a reduced averaged Lagrangian is obtained. Via the reduced averaged Lagrangian, the corresponding Lagrangian equations are derived. For the scheme II, through time averaging, the averaged Lagrangian is obtained, and then the corresponding equations for the slow variables can be obtained. Finally, two nonlinear vibratory systems with two-DOF and four-DOF, respectively, are given as examples to illustrate the new procedure for the CX-A method. The loci of nonlinear normal modes on the potential surface are studied in the first example, and the frequency-energy plot is investigated in the second example.  相似文献   

9.
A bundle-of-tubes construct is used as a model system to study ensemble averaged equations for multiphase flow in a porous material. Momentum equations for the fluid phases obtained from the method are similar to Darcy’s law, but with additional terms. We study properties of the additional terms, and the conditions under which the averaged equations can be approximated by the diffusion model or the extended Darcy’s law as often used in models for multiphase flows in porous media. Although the bundle-of-tubes model is perhaps the simplest model for a porous material, the ensemble averaged equation technique developed in this paper assumes the very same form in more general treatments described in Part 2 of the present work (Zhang, D.Z., 2009. Ensemble Phase Averaged Equations for Multiphase Flows in Porous Media, Part 2: A General Theory. Int. J. Multiphase Flow 35, 640–649). Any model equation system intended for the more general cases must be understood and tested first using simple models. The concept of ensemble phase averaging is dissected here in physical terms, without involved mathematics through its application to the idealized bundle-of-tubes model for multiphase flow in porous media.  相似文献   

10.
Spatially averaged turbulent stress and its partitioning   总被引:1,自引:0,他引:1  
Double averaging of the fundamental flow equations is an attractive methodology for investigating spatially heterogeneous flows. The resulting double-averaged equations can be used as a framework for development of turbulence models. In order to fully explore the potential of such models the stress terms that appear in the momentum equation as a result of each averaging step needs to be parameterised. We investigate the stress terms resulting from the double-decomposition of instantaneous velocity. The experimental values of these stress terms were determined from the laboratory experiments involving PIV measurements of shallow open channel flows over rough beds. Special attention is paid to the two terms that together form the spatially averaged turbulent stress, which have so far not been reported in the literature.  相似文献   

11.
The highly turbulent flow occurring inside gas-turbine combustors requires accurate simulation of scalar mixing if CFD methods are to be used with confidence in design. This has motivated the present paper, which describes the implementation of a passive scalar transport equation into an LES code, including assessment/testing of alternative discretisation schemes to avoid over/undershoots and excessive smoothing. Both second order accurate TVD and higher order accurate DRP schemes are assessed. The best performance is displayed by a DRP method, but this is only true on fine meshes; it produces similar (or larger) errors to a TVD scheme on coarser meshes, and the TVD approach has been retained for LES applications. The unsteady scalar mixing performance of the LES code is validated against published DNS data for a slightly heated channel flow. Excellent agreement between the current LES predictions and DNS data is obtained, for both velocity and scalar statistics. Finally, the developed methodology is applied to scalar transport in a confined co-axial jet mixing flow, for which experimental data are available. Agreement with statistically averaged fields for both velocity and scalar, is demonstrated to be very good, and a considerable improvement over the standard eddy viscosity RANS approach. Illustrations are presented of predicted time-resolved information e.g. time histories, and scalar pdf predictions. The LES results are shown, even using a simple Smagorinsky SGS model, to predict (correctly) lower values of the turbulent Prandtl number in the free shear regions of the flow, compared to higher values in the wall-affected regions. The ability to predict turbulent Prandtl number variations (rather than input these as in combustor RANS CFD models) is an important and promising feature of the LES approach for combustor flow simulation since it is known to be important in determining combustor exit temperature traverse.  相似文献   

12.
A1‐D numerical model is presented for vertically homogeneous shallow flows with variable horizontal density. The governing equations represent depth‐averaged mass and momentum conservation of a liquid–species mixture, and mass conservation of the species in the horizontal direction. Here, the term ‘species’ refers to material transported with the liquid flow. For example, when the species is taken to be suspended sediment, the model provides an idealized simulation of hyper‐concentrated sediment‐laden flows. The volumetric species concentration acts as an active scalar, allowing the species dynamics to modify the flow structure. A Godunov‐type finite volume scheme is implemented to solve the conservation laws written in a deviatoric, hyperbolic form. The model is verified for variable‐density flows, where analytical steady‐state solutions are derived. The agreement between the numerical predictions and benchmark test solutions illustrates the ability of the model to capture rapidly varying flow features over uniform and non‐uniform bed topography. A parameter study examines the effects of varying the initial density and depth in different regions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
It is well-known that at present, exact averaging of the equations for flow and transport in random porous media have been proposed for limited special fields. Moreover, approximate averaging methods—for example, the convergence behavior and the accuracy of truncated perturbation series—are not well-studied, and in addition, calculation of high-order perturbations is very complicated. These problems have for a long time stimulated attempts to find the answer to the question: Are there in existence some, exact, and sufficiently general forms of averaged equations? Here, we present an approach for finding the general exactly averaged system of basic equations for steady flow with sources in unbounded stochastically homogeneous fields. We do this by using (1) the existence and some general properties of Green’s functions for the appropriate stochastic problem, and (2) some information about the random field of conductivity. This approach enables us to find the form of the averaged equations without directly solving the stochastic equations or using the usual assumption regarding any small parameters. In the common case of a stochastically homogeneous conductivity field we present the exactly averaged new basic non-local equation with a unique kernel-vector. We show that in the case of some type of global symmetry (isotropy, transversal isotropy, or orthotropy), we can for three-dimensional and two-dimensional flow in the same way derive the exact averaged non-local equations with a unique kernel-tensor. When global symmetry does not exist, the non-local equation with a kernel-tensor involves complications and leads to an ill-posed problem.  相似文献   

14.
A mathematical model is developed of an abrupt pressure impact applied to a compressible fluid flowing through a porous medium domain. Nondimensional forms of the macroscopic fluid mass and momentum balance equations yield two new scalar numbers relating storage change to pressure rise. A sequence of four reduced forms of mass and momentum balance equations are shown to be associated with a sequence of four time periods following the onset of a pressure change. At the very first time period, pressure is proven to be distributed uniformly within the affected domain. During the second time interval, the momentum balance equation conforms to a wave form. The behavior during the third time period is governed by the averaged Navier-Stokes equation. After a long time, the fourth period is dominated by a momentum balance similar to Brinkman's equation which may convert to Darcy's equation when friction at the solid-fluid interface dominates.  相似文献   

15.
Most gas dynamic computations in industrial ducts are done in one dimension with cross-section-averaged Euler equations. This poses a fundamental difficulty as soon as geometrical discontinuities are present. The momentum equation contains a non-conservative term involving a surface pressure integral, responsible for momentum loss. Definition of this integral is very difficult from a mathematical standpoint as the flow may contain other discontinuities (shocks, contact discontinuities). From a physical standpoint, geometrical discontinuities induce multidimensional vortices that modify the surface pressure integral. In the present paper, an improved 1D flow model is proposed. An extra energy (or entropy) equation is added to the Euler equations expressing the energy and turbulent pressure stored in the vortices generated by the abrupt area variation. The turbulent energy created by the flow–area change interaction is determined by a specific estimate of the surface pressure integral. Model’s predictions are compared with 2D-averaged results from numerical solution of the Euler equations. Comparison with shock tube experiments is also presented. The new 1D-averaged model improves the conventional cross-section-averaged Euler equations and is able to reproduce the main flow features.  相似文献   

16.
A finite difference method has been developed to predict the overall features of the local mean flow in fully developed turbulent non-circular passage flows. The main transport effects of secondary flow have been identified and simulated with diffusion transport in a simple way which eliminates solution of the cross-plane momentum and continuity equations and produces a compact calculation method. Predictions are presented for four different passage shapes and are discussed in relation to experimental measurements and predictions from other more complex methods. Although some minor details were not predicted, the main effects of secondary flow on the mean flow were found to have been quite well simulated, yielding predictions that are in reasonable overall agreement with experiment.  相似文献   

17.
Langevin stochastic differential equations provide a consistent basis for Reynolds stress, scalar transport and p.d.f. models. However, the stochastic equations must be capable of representing existing closures, like the General Linear Model, or the Rotta and Monin return to isotropy formulations. A consistent approach to derive both Reynolds stress and scalar flux transport equations, starting from a stochastic differential equation for velocity fluctuations, is presented here. A set of algebraic relations for the dispersion tensor is derived for homogeneous shear flow and for the log-layer.  相似文献   

18.
Two-phase flow modeling has been under constant development for the past forty years. Actually there exists a hierarchy of models which extends from the homogeneous model valid for two-phase flows where the phases are strongly coupled to the two-fluid model valid for two-phase flows where the phases are a priori weakly coupled. However the latter model has been used extensively in computer codes because of its potential in handling many different physical situations.The two-fluid model is based on the balance equations for mass, momentum and energy, averaged in a certain sense and expressed for each phase and for the interface between the phases. The difficulty in using the two-fluid model stems from the closure relations needed to arrive at a complete set of partial differential equations describing the flow. These closure relations should supply the information lost during the averaging of the balance equations and should specify in particular the interactions of mass, momentum and energy between the phases. Another requirement for the interaction terms is that they should satisfy the interfacial balance equations. Some of these terms such as the added mass term or the lift force term do not depend on the interfacial area but some others do, such as the mass transfer term, the drag term or the heat flux term. It is then necessary to model the interfacial area in order to evaluate the corresponding fluxes. Another benefit resulting from the modeling of the interfacial area would be to replace the usual static flow pattern maps which specify the flow configuration by a dynamic follow-up of the flow pattern. All these reasons explain why so much effort has been put during the past twenty years on the modeling and measurement of the interfacial area in two-phase flows.This article contains two parts. The first one deals with the conceptual issues and has the following objectives:
    1.
    to give precise definitions of the interfacial area concentrations;
    2.
    to explain the origin of the interfacial area concentration transport equation suggested by M. Ishii in 1975;
    3.
    to explain some paradoxical behaviors encountered when calculating the interfacial area concentration transport velocity.
  相似文献   

19.
In the current study, numerical investigation of incompressible turbulent flow is presented. By the artificial compressibility method, momentum and continuity equations are coupled. Considering Reynolds averaged Navier–Stokes equations, the Spalart–Allmaras turbulence model, which has accurate results in two‐dimensional problems, is used to calculate Reynolds stresses. For convective fluxes a Roe‐like scheme is proposed for the steady Reynolds averaged Navier–Stokes equations. Also, Jameson averaging method was implemented. In comparison, the proposed characteristics‐based upwind incompressible turbulent Roe‐like scheme, demonstrated very accurate results, high stability, and fast convergence. The fifth‐order Runge–Kutta scheme is used for time discretization. The local time stepping and implicit residual smoothing were applied as the convergence acceleration techniques. Suitable boundary conditions have been implemented considering flow behavior. The problem has been studied at high Reynolds numbers for cross flow around the horizontal circular cylinder and NACA0012 hydrofoil. Results were compared with those of others and a good agreement has been observed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Stress predictions have been made for two materials using the new strain measure developed in Part I. For the startup of steady-shear flow, the predictions show increasing overshoot of shear and normal stresses at increasing shear rates, and both qualitatively and quantitatively there is good agreement with the experimental results for a polymer solution and a melt. The information contained in Part I on the strain measure is found to be insufficient for making exact predictions for flows other than shear flows, but it is shown here that uniaxial elongational flow is sufficiently similar to shear flow for predictions to be made with only a low degree of inaccuracy. Data on the elongational behaviour of the melt are available from the literature and the predictions made here are found to be in satisfactory agreement with the reported behaviour. All of the predictions require as input information only the linear viscoelastic behaviour of the material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号