首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical algorithm for the steady state solution of three‐dimensional incompressible flows is presented. A preconditioned time marching scheme is applied to the conservative form of the governing equations. The preconditioning matrix multiplies the time derivatives of the system and circumvents the eigenvalue‐caused stiffness at low speed. The formulation is suitable for constant density flows and for flows where the density depends on non‐passive scalars, such as in low‐speed combustion applications. The k–ε model accounts for turbulent transport effects. A cell‐centred finite volume formulation with a Runge–Kutta time stepping scheme for the primitive variables is used. Second‐order spatial accuracy is achieved by developing for the preconditioned system an approximate Riemann solver with MUSCL reconstruction. A multi‐grid technique coupled with local time stepping and implicit residual smoothing is used to accelerate the convergence to the steady state solution. The convergence behaviour and the validation of the predicted solutions are examined for laminar and turbulent constant density flows and for a turbulent non‐premixed flame simulated by a presumed probability density function (PDF) model. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
A model for single-phase turbulent reacting flow is presented and a solution algorithm is described. The model combines the standardk - model for the velocity field with a transport equation for the probability density function (PDF) of the thermochemical variables. In this equation terms describing spatial transport by velocity fluctuations and mixing on the smallest scales are modelled. The essential advantage of this approach is that the effect of nonlinear kinetics appears in closed form and that the influence of turbulent fluctuations on mean reaction rates is included. A stochastic algorithm for the solution of the PDF transport equation, essentially due to Pope, is described. Cylindrical symmetry is assumed. The PDF is represented by ensembles ofN representative values of the thermochemical variables in each cell of a nonuniform finite-difference grid and operations on these elements representing convection, diffusion, mixing and reaction are derived. A simplified model and solution algorithm which neglects the influence of turbulent fluctuations on mean reaction rates is also described. Both algorithms are applied to a selectivity problem in a real reactor studied earlier by Liu and Barkelew. Spatial profiles of mean species mole fractions and of relative selectivity to the target product are obtained. The profiles are clearly different in both models but at the end of the reactor the same selectivity is predicted.Presented at the Shell Conference on Computational Fluid Dynamics for Petrochemical Process Equipment, Hoenderloo, December 10–12, 1989.  相似文献   

3.
A simple subgrid turbulent diffusion model based on an analogy to the von Neumann–Richtmyer artificial viscosity is explored for use in modelling mixing in turbulent stratified shear flow. The model may be more generally applicable to multicomponent turbulent hydrodynamics and to subgrid turbulent transport of momentum, composition and energy. As in the case of the von Neumann artificial viscosity and many subgrid-scale models for large-eddy simulation, the turbulent diffusivity explicitly depends on the grid size and is not based on a quantitative model of the unresolved turbulence. In order to address the issue that it is often not known a priori when and where a flow will become turbulent, the turbulent diffusivity is set to zero when the flow is expected to be stable on the basis of a Richardson/Rayleigh–Taylor stability criterion, in analogy to setting the von Neumann artificial viscosity to zero in expanding flows. One-dimensional predictions of this model applied to a simple shear flow configuration are compared to those obtained using a K–ε model. The density and velocity profiles predicted by both models are shown to be very similar.  相似文献   

4.
A numerical method for the efficient calculation of three‐dimensional incompressible turbulent flow in curvilinear co‐ordinates is presented. The mathematical model consists of the Reynolds averaged Navier–Stokes equations and the k–ε turbulence model. The numerical method is based on the SIMPLE pressure‐correction algorithm with finite volume discretization in curvilinear co‐ordinates. To accelerate the convergence of the solution method a full approximation scheme‐full multigrid (FAS‐FMG) method is utilized. The solution of the k–ε transport equations is embedded in the multigrid iteration. The improved convergence characteristic of the multigrid method is demonstrated by means of several calculations of three‐dimensional flow cases. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
A three‐dimensional baroclinic numerical model has been developed to compute water levels and water particle velocity distributions in coastal waters. The numerical model consists of hydrodynamic, transport and turbulence model components. In the hydrodynamic model component, the Navier–Stokes equations are solved with the hydrostatic pressure distribution assumption and the Boussinesq approximation. The transport model component consists of the pollutant transport model and the water temperature and salinity transport models. In this component, the three‐dimensional convective diffusion equations are solved for each of the three quantities. In the turbulence model, a two‐equation k–ϵ formulation is solved to calculate the kinetic energy of the turbulence and its rate of dissipation, which provides the variable vertical turbulent eddy viscosity. Horizontal eddy viscosities can be simulated by the Smagorinsky algebraic sub grid scale turbulence model. The solution method is a composite finite difference–finite element method. In the horizontal plane, finite difference approximations, and in the vertical plane, finite element shape functions are used. The governing equations are solved implicitly in the Cartesian co‐ordinate system. The horizontal mesh sizes can be variable. To increase the vertical resolution, grid clustering can be applied. In the treatment of coastal land boundaries, the flooding and drying processes can be considered. The developed numerical model predictions are compared with the analytical solutions of the steady wind driven circulatory flow in a closed basin and of the uni‐nodal standing oscillation. Furthermore, model predictions are verified by the experiments performed on the wind driven turbulent flow of an homogeneous fluid and by the hydraulic model studies conducted on the forced flushing of marinas in enclosed seas. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
A simplified consistency formulation for Pk/ε (production to dissipation ratio) is devised to obtain a non-singular Cμ (coefficient of eddy-viscosity) in the explicit algebraic Reynolds stress model of Gatski and Speziale. The coefficient Cμ depends non-linearly on both rotational/irrotational strains and is used in the framework of an improved RAS (Rahman–Agarwal–Siikonen) one-equation turbulence model to calculate a few well-documented turbulent flows, yielding predictions in good agreement with the direct numerical simulation and experimental data. The strain-dependent Cμ assists the RAS model in constructing the coefficients and functions such as to benefit complex flows with non-equilibrium turbulence. Comparisons with the Spalart–Allmaras one-equation model and the shear stress transport k-ω model demonstrate that Cμ improves the response of RAS model to non-equilibrium effects.  相似文献   

7.
8.
This paper presents a manufactured solution (MS), resembling a two-dimensional, steady, wall-bounded, incompressible, turbulent flow for RANS codes verification. The specified flow field satisfies mass conservation, but requires additional source terms in the momentum equations. To also allow verification of the correct implementation of the turbulence models transport equations, the proposed MS exhibits most features of a true near-wall turbulent flow. The model is suited for testing six eddy-viscosity turbulence models: the one-equation models of Spalart and Allmaras and Menter; the standard two-equation k–ε model and the low-Reynolds version proposed by Chien; the TNT and BSL versions of the k–ω model.  相似文献   

9.
A computational method has been developed to predict the turbulent Reynolds stresses and turbulent heat fluxes in ducts by different turbulence models. The turbulent Reynolds stresses and other turbulent flow quantities are predicted with a full Reynolds stress model (RSM). The turbulent heat fluxes are modelled by a SED concept, the GGDH and the WET methods. Two wall functions are used, one for the velocity field and one for the temperature field. All the models are implemented for an arbitrary three‐dimensional channel. Fully developed condition is achieved by imposing cyclic boundary conditions in the main flow direction. The numerical approach is based on the finite volume technique with a non‐staggered grid arrangement. The pressure–velocity coupling is handled by using the SIMPLEC‐algorithm. The convective terms are treated by the van Leer scheme while the diffusive terms are handled by the central‐difference scheme. The hybrid scheme is used for solving the ε equation. The secondary flow generation using the RSM model is compared with a non‐linear kε model (non‐linear eddy viscosity model). The overall comparison between the models is presented in terms of the friction factor and Nusselt number. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
The partially integrated transport modelling (PITM) method can be viewed as a continuous approach for hybrid RANS/LES modelling allowing seamless coupling between the RANS and the LES regions. The subgrid turbulence quantities are thus calculated from spectral equations depending on the varying spectral cutoff location [Schiestel, R., Dejoan, A., 2005. Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations. Theoretical and Computational Fluid Dynamics 18, 443–468; Chaouat, B., Schiestel, R., 2005. A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows. Physics of Fluids, 17 (6)] The PITM method can be applied to almost all statistical models to derive its hybrid LES counterpart. In the present work, the PITM version based on the transport equations for the turbulent Reynolds stresses together with the dissipation transport rate equation is now developed in a general formulation based on a new accurate energy spectrum function E(κ) valid in both large and small eddy ranges that allows to calibrate more precisely the csgs2 function involved in the subgrid dissipation rate sgs transport equation. The model is also proposed here in an extended form which remains valid in low Reynolds number turbulent flows. This is achieved by considering a characteristic turbulence length-scale based on the total turbulent energy and the total dissipation rate taking into account the subgrid and resolved parts of the dissipation rate. These improvements allow to consider a large range of flows including various free flows as well as bounded flows. The present model is first tested on the decay of homogeneous isotropic turbulence by referring to the well known experiment of Comte-Bellot and Corrsin. Then, initial perturbed spectra E(κ) with a peak or a defect of energy are considered for analysing the model capabilities in strong non-equilibrium flow situations. The second test case is the classical fully turbulent channel flow that allows to assess the performance of the model in non-homogeneous flows characterised by important anisotropy effects. Different simulations are performed on coarse and refined meshes for checking the grid independence of solutions as well as the consistency of the subgrid-scale model when the filter width is changed. A special attention is devoted to the sharing out of the energy between the subgrid-scales and the resolved scales. Both the mean velocity and the turbulent stress computations are compared with data from direct numerical simulations.  相似文献   

11.
In transonic flow conditions, the shock wave/turbulent boundary layer interaction and flow separations on wing upper surface induce flow instabilities, ‘buffet’, and then the buffeting (structure vibrations). This phenomenon can greatly influence the aerodynamic performance. These flow excitations are self‐sustained and lead to a surface effort due to pressure fluctuations. They can produce enough energy to excite the structure. The objective of the present work is to predict this unsteady phenomenon correctly by using unsteady Navier–Stokes‐averaged equations with a time‐dependent turbulence model based on the suitable (kε) turbulent eddy viscosity model. The model used is based on the turbulent viscosity concept where the turbulent viscosity coefficient () is related to local deformation and rotation rates. To validate this model, flow over a flat plate at Mach number of 0.6 is first computed, then the flow around a NACA0012 airfoil. The comparison with the analytical and experimental results shows a good agreement. The ONERA OAT15A transonic airfoil was chosen to describe buffeting phenomena. Numerical simulations are done by using a Navier–Stokes SUPG (streamline upwind Petrov–Galerkin) finite‐element solver. Computational results show the ability of the present model to predict physical phenomena of the flow oscillations. The unsteady shock wave/boundary layer interaction is described. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
A numerical study of scalar dispersion is presented to investigate the effectiveness of pairing the v2f turbulence model with algebraic models for the scalar flux. This approach is contrasted with utilizing a full Second Moment Closure (SMC) as the flow field input to the scalar model. Predictions of scalar transport in a turbulent channel and over a wavy wall are compared to available DNS databases. The latter case includes a scalar release from a point source and therefore detailed comparisons of the three-component turbulent scalar flux are reported. It is found that the transported variable v2, representing the near wall turbulent velocity fluctuation scale, can be used to increase the level of normal stress anisotropy provided to algebraic scalar models and thereby improve mean scalar prediction over that of the Standard Gradient Diffusion Hypothesis (SGDH). Improvement is most significant in the near wall region. Three specifications of the normal stresses, derived from v2, are considered to provide the link from the v2f model to the algebraic flux models used to close the scalar transport equation. Barycentric maps are used to examine the state of turbulence anisotropy in each case. As the anisotropy in the normal stress specification becomes more accurate, improvements are realized in the prediction of the spanwise flux as well as the mean concentration.  相似文献   

13.
A three-dimensional hydrodynamic model has been developed for turbulent flows with free surface. In the horizontal xy-plane, a boundary-fitted curvilinear co-ordinate system is adopted, while in the vertical direction, a σ-co-ordinate transformation is used to represent the free surface and bed topography or lower boundary. Using the finite volume method, the convection terms are discretized using Roe's second-order-accurate scheme. The governing equations are solved in a collocated grid system by a fractional three-step implicit algorithm that has been developed to handle the velocity–pressure–depth coupling problem of free surface incompressible fluid flows. The present study is the extension of previous work to three-dimensional turbulent flows. The model has been applied to three test cases. Comparison with available data shows that the model developed is successful, and is valuable to engineering application. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
This work aims to model buoyant, laminar or turbulent flows, using a two‐dimensional incompressible smoothed particle hydrodynamics model with accurate wall boundary conditions. The buoyancy effects are modelled through the Boussinesq approximation coupled to a heat equation, which makes it possible to apply an incompressible algorithm to compute the pressure field from a Poisson equation. Based on our previous work [1], we extend the unified semi‐analytical wall boundary conditions to the present model. The latter is also combined to a Reynolds‐averaged Navier–Stokes approach to treat turbulent flows. The k ? ? turbulence model is used, where buoyancy is modelled through an additional term in the k ? ? equations like in mesh‐based methods. We propose a unified framework to prescribe isothermal (Dirichlet) or to impose heat flux (Neumann) wall boundary conditions in incompressible smoothed particle hydrodynamics. To illustrate this, a theoretical case is presented (laminar heated Poiseuille flow), where excellent agreement with the theoretical solution is obtained. Several benchmark cases are then proposed: a lock‐exchange flow, two laminar and one turbulent flow in differentially heated cavities, and finally a turbulent heated Poiseuille flow. Comparisons are provided with a finite volume approach using an open‐source industrial code. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
This paper discusses the importance of realistic implementation of the physical boundary conditions into computational domain for the simulation of the oscillatory turbulent boundary layer flow over smooth and rough flat beds. A mathematical model composed of the Reynolds averaged Navier–Stokes equation, turbulent kinetic energy (k) and dissipation rate of the turbulent kinetic energy (ε) has been developed. Control‐volume approach is used to discretize the governing equations to facilitate the numerical solution. Non‐slip condition is imposed on the bottom surface, and irrotational main flow properties are applied to the upper boundary. The turbulent kinetic energy is zero at the bottom, whereas the dissipation rate is approaching to a constant value, which is proportional to the kinematic viscosity times the second derivative of the turbulent kinetic energy. The output of the model is compared with the available experimental studies conducted in oscillatory tunnels and wave flume. It is observed that the irrotational flow assumption at the upper boundary is not realistic in case of water tunnels. Therefore, new upper boundary conditions are proposed for oscillatory tunnels. The data of wave flume show good agreement with the proposed numerical model. Additionally, several factors such as grid aspect ratio, staggered grid arrangement, time‐marching scheme and convergence criteria that are important to obtain a robust, realistic and stable code are discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
An implicit unfactored method for the coupled solution of the compressible Navier–Stokes equations with two-equation turbulence models is presented. Both fluid-flow and turbulence transport equations are discretized by a characteristics-based scheme. The implicit unfactored method combines Newton subiterations and point-by-point Gauss–Seidel subrelaxation. Implicit-coupled and -decoupled strategies are compared for their efficiency in the solution of the Navier–Stokes equations in conjunction with low-Re two-equation turbulence models. Computations have been carried out for the flow over an axisymmetric bump using the k–ϵ and k–ω models. Comparisons have been obtained with experimental data and other numerical solutions. The present study reveals that the implicit unfactored implementation of the two-equation turbulence models reduces the computing time and improves the robustness of the CFD code in turbulent compressible flows. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
Large‐eddy simulation (LES) and Reynolds‐averaged Navier–Stokes simulation (RANS) with different turbulence models (including the standard k?ε, the standard k?ω, the shear stress transport k?ω (SST k?ω), and Spalart–Allmaras (S–A) turbulence models) have been employed to compute the turbulent flow of a two‐dimensional turbulent boundary layer over an unswept bump. The predictions of the simulations were compared with available experimental measurements in the literature. The comparisons of the LES and the SST k?ω model including the mean flow and turbulence stresses are in satisfied agreements with the available measurements. Although the flow experiences a strong adverse pressure gradient along the rear surface, the boundary layer is unique in that intermittent detachment occurring near the wall. The numerical results indicate that the boundary layer is not followed by mean‐flow separation or incipient separation as shown from the numerical results. The resolved turbulent shear stress is in a reasonable agreement with the experimental data, though the computational result of LES shows that its peak is overpredicted near the trailing edge of the bump, while the other used turbulence models, except the standard k?ε, underpredicts it. Analysis of the numerical results from LES confirms the experimental data, in which the existence of internal layers over the bump surface upstream of the summit and along the downstream flat plate. It also demonstrates that the quasi‐step increase in skin friction is due to perturbations in pressure gradient. The surface curvature enhances the near‐wall shear production of turbulent stresses, and is responsible for the formation of the internal layers. The aim of the present work is to examine the response and prediction capability of LES with the dynamic eddy viscosity model as a sub‐grid scale to the complex turbulence structure with the presence of streamline curvature generated by a bumpy surface. Aiming to reduce the computational costs with focus on the mean behavior of the non‐equilibrium turbulent boundary layer of flow over the bump surface, the present investigation also explains the best capability of one of the used RANS turbulence models to capture the driving mechanism for the surprisingly rapid return to equilibrium over the trailing flat plate found in the measurements. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
An improved anisotropic model for the dissipation rate—ε—of the turbulent kinetic energy (k), to be used together with a non‐linear pressure‐strain correlations model, is proposed. Experimental data from the open literature for two confined turbulent swirling flows are used to assess the performance of the proposed model in comparison to the standard ε transport equation and to a linear approach to model the pressure‐strain term that appears in the exact equations for the Reynolds‐stress tensor. For the less strongly swirling flow the predictions show much more sensitivity to the εtransport equation than to the pressure‐strain model. In opposition, for the more strongly swirling flow, the results show that the predictions are much sensitive to the pressure‐strain model. Nevertheless, the improved εtransport equation together with the non‐linear pressure strain model yield predictions in good agreement with experiments in both studied cases. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
The present study is concerned with simulating turbulent, strongly swirling flows by eddy viscosity model and Reynolds stress transport model variants adopting linear and quadratic form of the pressure–strain models. Flows with different inlet swirl numbers, 2.25 and 0.85, were investigated. Detailed comparisons of the predicted results and measurements were presented to assess the merits of model variants. For the swirl number 2.25 case, due to the inherent capability of the Reynolds stress models to capture the strong swirl and turbulence interaction, both the linear and quadratic form of the pressure–strain models predict the flow adequately. In strong contrast, the k–ϵ model predicts an excessively diffusive flow fields. For the swirl number 0.85 case, both the k–ϵ and Reynolds stress model with linear pressure–strain process, show an excessive diffusive transport of the flow fields. The quadratic pressure–strain model, on the other hand, mimics the correct flow development with the recirculating region being correctly predicted. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
A three-parameter model of turbulence applicable to free boundary layers has been developed and applied for the prediction of axisymmetric turbulent swirling flows in uniform and stagnant surroundings under the action of buoyancy forces. The turbulent momentum and heat fluxes appearing in the time-averaged equations for the mean motion have been determined from algebraic expressions, derived by neglecting the convection and diffusion terms in the differential transport equations for these quantities, which relate the turbulent fluxes to the kinetic energy of turbulence, k, the dissipation length scale of turbulence, L, and the temperature covariance, T2. Differential transport equations have been used to determine these latter quantities. The governing equations have been solved using fully implicit finite difference schemes. The turbulence model is capable of reproducing the gross features of pure jet flows, buoyant flows and swirling flows for weak and moderate swirl. The behaviour of a turbulent buoyant swirling jet has been found to depend solely on exit swirl and Froude numbers. The predicted results indicate that the incorporation of buoyancy can cause significant changes in the behaviour of a swirling jet, particularly when the buoyancy strength is high. The jet exhibits similarity behaviour in the initial region for weak swirl and weak buoyancy strengths only, and the asymptotic case of a swirling jet under the action of buoyancy forces is a pure plume in the far field. The predicted results have been found to be in satisfactory agreement with the available experimental data and in good qualitative agreement with other predicted results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号