首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Approximate or exact Riemann solvers play a key role in Godunov‐type methods. In this paper, three approximate Riemann solvers, the MFCAV, DKWZ and weak wave approximation method schemes, are investigated through numerical experiments, and their numerical features, such as the resolution for shock and contact waves, are analyzed and compared. Based on the analysis, two new adaptive Riemann solvers for general equations of state are proposed, which can resolve both shock and contact waves well. As a result, an ALE method based on the adaptive Riemann solvers is formulated. A number of numerical experiments show good performance of the adaptive solvers in resolving both shock waves and contact discontinuities. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
A new HLLC (Harten-Lax-van leer contact) approximate Riemann solver with the preconditioning technique based on the pseudo-compressibility formulation for numerical simulation of the incompressible viscous flows has been proposed, which follows the HLLC Riemann solver (Harten, Lax and van Leer solver with contact resolution modified by Toro) for the compressible flow system. In the authors' previous work, the preconditioned Roe's Riemann solver is applied to the finite difference discretisation of the inviscid flux for incompressible flows. Although the Roe's Riemann solver is found to be an accurate and robust scheme in various numerical computations, the HLLC Riemann solver is more suitable for the pseudo-compressible Navier--Stokes equations, in which the inviscid flux vector is a non-homogeneous function of degree one of the flow field vector, and however the Roe's solver is restricted to the homogeneous systems. Numerical investigations have been performed in order to demonstrate the efficiency and accuracy of the present procedure in both two- and three-dimensional cases. The present results are found to be in good agreement with the exact solutions, existing numerical results and experimental data.  相似文献   

3.
This article is to continue the present author's work (International Journal of Computational Fluid Dynamics (2009) 23 (9), 623–641) on studying the structure of solutions of the Riemann problem for a system of three conservation laws governing two-phase flows. While existing solutions are limited and found quite recently for the Baer and Nunziato equations, this article presents the first instance of an exact solution of the Riemann problem for two-phase flow in gas–liquid mixture. To demonstrate the structure of the solution, we use a hyperbolic conservative model with mechanical equilibrium and without velocity equilibrium. The Riemann problem solution for the model equations comprises a set of elementary waves, rarefaction and discontinuous waves of various types. In particular, such a solution treats both the wave structure and the intermediate states of the two-phase gas–liquid mixture. The resulting exact Riemann solver is fully non-linear, direct and complete. On this basis then, we use locally the exact Riemann solver for the two-phase flow in gas–liquid mixture within the framework of finite volume upwind Godunov methods. In order to demonstrate the effectiveness and accuracy of the proposed solver, we consider a series of test problems selected from the open literature and compare the exact and numerical results by using upwind Godunov methods, showing excellent oscillation-free results in two-phase fluid flow problems.  相似文献   

4.
In this paper, we concern about the Riemann problem for compressible no-slip drift-flux model which represents a system of quasi-linear partial differential equations derived by averaging the mass and momentum conservation laws with modified Chaplygin two-phase flows. We obtain the exact solution of Riemann problem by elaborately analyzing characteristic fields and discuss the elementary waves namely, shock wave, rarefaction wave and contact discontinuity wave. By employing the equality of pressure and velocity across the middle characteristic field, two nonlinear algebraic equations with two unknowns as gas density ahead and behind the middle wave are formed. The Newton–Raphson method of two variables is applied to find the unknowns with a series of initial data from the literature. Finally, the exact solution for the physical quantities such as gas density, liquid density, velocity, and pressure are illustrated graphically.  相似文献   

5.
The scope of this paper is three fold. We first formulate upwind and symmetric schemes for hyperbolic equations with non‐conservative terms. Then we propose upwind numerical schemes for conservative and non‐conservative systems, based on a Riemann solver, the initial conditions of which are evolved non‐linearly in time, prior to a simple linearization that leads to closed‐form solutions. The Riemann solver is easily applied to complicated hyperbolic systems. Finally, as an example, we formulate conservative schemes for the three‐dimensional Euler equations for general compressible materials and give numerical results for a variety of test problems for ideal gases in one and two space dimensions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
This work presents the highly accurate numerical calculation of the natural frequencies and buckling loads for thick elastic rectangular plates with various combinations of boundary conditions. The Reissener–Mindlin first order shear deformation plate theory and the higher order shear deformation plate theory of Reddy have been applied to the plate’s analysis. The governing equations and the boundary conditions are derived using the dynamic version of the principle of minimum of the total energy. The solution is obtained by the extended Kantorovich method. This approach is combined with the exact element method for the vibration and stability analysis of compressed members, which provides for the derivation of the exact dynamic stiffness matrix including the effect of in-plane and inertia forces. The large number of numerical examples demonstrates the applicability and versatility of the present method. The results obtained by both shear deformation theories are compared with those obtained by the classical thin plate’s theory and with published results. Many new results are given too.  相似文献   

7.
溃坝问题是典型的非线性双曲方程的Riemann问题,其数值求解的难点在于对间断面的捕捉以及避免间断面处在数值计算过程中产生数值色散,因而为求解此问题所产生的各种数值计算方法的优劣也体现在这两个方面。本文针对溃坝问题提出一种新的计算方法。该方法基于对偶变量推导的浅水波方程,根据方程的特点,从方程的特征值和黎曼不变量出发,采用高精度的激波捕捉方法计算黎曼不变量的位置随时间的变化,然后映射至不随时间变化的固定网格。根据黎曼不变量的位置,采用保形分段三次Hermite插值将物理量映射至网格节点。计算结果显示,该方法不仅操作简单,计算量小,而且结果准确。  相似文献   

8.
采用基于自适应Cartesian网格的level set方法对多介质流动问题进行数值模拟。采用基于四叉树的方法来生成自适应Cartesian网格。采用有限体积法求解Euler方程,控制面通量的计算采用HLLC(Hartern, Lax, van Leer, Contact)近似黎曼解方法。level set方程也采用有限体积法求解,采用Lax-Friedchs方法计算通量,通过窄带方法来减少计算量,界面的处理采用ghost fluid方法。Runge-Kutta显式时间推进,时间、空间都是二阶精度。对两种不同比热比介质激波管问题进行数值模拟,其结果和精确解吻合;对空气/氦气泡相互作用等问题进行模拟,取得令人满意的结果。  相似文献   

9.
E. F. Toro 《Shock Waves》1995,5(1-2):75-80
Approaches for finding direct, approximate solutions to the Riemann problem are presented. These result in three approximate Riemann solvers. Here we discuss the time-dependent Euler equations but the ideas are applicable to other systems. The approximate solvers are (i) assessed on local Riemann problems with exact solutions and (ii) used in conjunction with the Weighted Average Flux (WAF) method to solve the two-dimensional Euler equations numerically. The resulting numerical technique is assessed on a shock reflection problem. Comparison with experimental observation is carried out.  相似文献   

10.
The Riemann solver is the fundamental building block in the Godunov‐type formulation of many nonlinear fluid‐flow problems involving discontinuities. While existing solvers are obtained either iteratively or through approximations of the Riemann problem, this paper reports an explicit analytical solution to the exact Riemann problem. The present approach uses the homotopy analysis method to solve the nonlinear algebraic equations resulting from the Riemann problem. A deformation equation defines a continuous variation from an initial approximation to the exact solution through an embedding parameter. A Taylor series expansion of the exact solution about the embedding parameter provides a series solution in recursive form with the initial approximation as the zeroth‐order term. For the nonlinear shallow‐water equations, a sensitivity analysis shows fast convergence of the series solution and the first three terms provide highly accurate results. The proposed Riemann solver is implemented in an existing finite‐volume model with a Godunov‐type scheme. The model correctly describes the formation of shocks and rarefaction fans for both one and two‐dimensional dam‐break problems, thereby verifying the proposed Riemann solver for general implementation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
An analytical approach is developed for nonlinear free vibration of a conservative, two-degree-of-freedom mass–spring system having linear and nonlinear stiffnesses. The main contribution of the proposed approach is twofold. First, it introduces the transformation of two nonlinear differential equations of a two-mass system using suitable intermediate variables into a single nonlinear differential equation and, more significantly, the treatment a nonlinear differential system by linearization coupled with Newton’s method and harmonic balance method. New and accurate higher-order analytical approximate solutions for the nonlinear system are established. After solving the nonlinear differential equation, the displacement of two-mass system can be obtained directly from the governing linear second-order differential equation. Unlike the common perturbation method, this higher-order Newton–harmonic balance (NHB) method is valid for weak as well as strong nonlinear oscillation systems. On the other hand, the new approach yields simple approximate analytical expressions valid for small as well as large amplitudes of oscillation unlike the classical harmonic balance method which results in complicated algebraic equations requiring further numerical analysis. In short, this new approach yields extended scope of applicability, simplicity, flexibility in application, and avoidance of complicated numerical integration as compared to the previous approaches such as the perturbation and the classical harmonic balance methods. Two examples of nonlinear two-degree-of-freedom mass–spring system are analyzed and verified with published result, exact solutions and numerical integration data.  相似文献   

12.
The system of integrodifferential equations describing the spatial stationary freeboundary shear flows of an ideal fluid in the shallowwater approximation is considered. The generalized characteristics of the model are found and the hyperbolicity conditions are formulated. A new class of exact solutions of the governing equations is obtained which is characterized by a special dependence of the desired functions on the vertical coordinate. The system of equations describing this class of solutions in the hyperbolic case is reduced to Riemann invariants. New exact solutions of the equations of motion are found.  相似文献   

13.
In this paper, we generalize the Pfaff–Birkhoff principle to the case of containing fractional derivatives and obtain the so-called fractional Pfaff–Birkhoff–d’Alembert principle. The fractional Birkhoff equations in the sense of Riemann–Liouville fractional derivative are derived. Under the framework of variational integrators, we develop the discrete fractional Birkhoff equations by approximating the Riemann–Liouville fractional derivative with the shifted Grünwald–Letnikov fractional derivative. The resulting algebraic equations can be served as an algorithm to numerically solve the fractional Birkhoff equations. A numerical example is demonstrated to show the validity and applicability of the presented methodology.  相似文献   

14.
15.
Numerical modelling of shallow water flow in two dimensions is presented in this work with the results obtained in dam break tests. Free surface flow in channels can be described mathematically by the shallow‐water system of equations. These equations have been discretized using an approach based on unstructured Delaunay triangles and applied to the simulation of two‐dimensional dam break flows. A cell centred finite volume method based on Roe's approximate Riemann solver across the edges of the cells is presented and the results are compared for first‐ and second‐order accuracy. Special treatment of the friction term has been adopted and will be described. The scheme is capable of handling complex flow domains as shown in the simulation corresponding to the test cases proposed, i.e. that of a dam break wave propagating into a 45° bend channel (UCL) and in a channel with a constriction (LNEC‐IST). Comparisons of experimental and numerical results are shown. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, a new efficient method to evaluate the exact stiffness and mass matrices of a non-uniform Bernoulli–Euler beam resting on an elastic Winkler foundation is presented. The non-uniformity may result from variable cross-section and/or from inhomogeneous linearly elastic material. It is assumed that there is no abrupt variation in the cross-section of the beam so that the Euler–Bernoulli theory is valid. The method is based on the integration of the exact shape functions which are derived from the solution of the axial deformation problem of a non-uniform bar and the bending problem of a non-uniform beam which are both formulated in terms of the two displacement components. The governing differential equations are uncoupled with variable coefficients and are solved within the framework of the analog equation concept. According to this, the two differential equations with variable coefficients are replaced by two linear ones pertaining to the axial and transverse deformation of a substitute beam with unit axial and bending stiffness, respectively, under ideal load distributions. The key point of the method is the evaluation of the two ideal loads which in this work is achieved by approximating them by two polynomials. More specifically, the axial ideal load is approximated by a linear polynomial while the transverse one by a cubic polynomial. The numerical implementation of the method is simple, and the results are compared favorably to those obtained by exact solutions available in literature.  相似文献   

17.
18.
In this work hydrodynamics of multicomponent ideal gas mixtures have been studied. Starting from the kinetic equations, the Eulerian approach is used to derive a new set of conservation equations for the multicomponent system where each component may have different velocity and kinetic temperature. The equations are based on the Grad's method of moment derived from the kinetic model in a relaxation time approximation (RTA). Based on this model which contains separate equation sets for each component of the system, a computer code has been developed for numerical computation of compressible flows of binary gas mixture in generalized curvilinear boundary conforming coordinates. Since these equations are similar to the Navier-Stokes equations for the single fluid systems, the same numerical methods are applied to these new equations. The Roe's numerical scheme is used to discretize the convective terms of governing fluid flow equations. The prepared algorithm and the computer code are capable of computing and presenting flow fields of each component of the system separately as well as the average flow field of the multicomponent gas system as a whole. Comparison of the present code results with those of a more common algorithm based on the mixture theory in a supersonic converging-diverging nozzle provides the validation of the present formulation. Afterwards, a more involved nozzle cooling problem with a binary ideal gas (helium-xenon) is chosen to compare the present results with those of the ordinary mixture theory. The present model provides the details of the flow fields of each component separately which is not available otherwise. It is also shown that the separate fluids treatment, such as the present study, is crucial when considering time scales on the order of (or shorter than) the intercollisions relaxation times.  相似文献   

19.
Abstract

A flux formulation using a projected 2D Roe Riemann solver on unstructured grids (R2D Solver) is introduced for solving the Navier-Stokes equations and is applied to calculations of axisymmetric laminar near-wake flows behind a spherical-conical body. The numerical framework was first developed by P. L. Roe et al, in the late eighties. They looked for unsteady solutions to Euler's equations using a rather simple but exact three state linearization on triangular grids and decomposing the solution using some effective wave models. Our approach differs from their techniques by constructing a second order accurate and conservative flux functions under the well-known classical finite volume formulation. However, our Riemann Solver is obtained by a suitable linearization procedure upon all three prescribed nodal values given on each triangle. Our numerical method is applied to a Mach 4.3 flow problem for refined unstructured triangular grid behind the body. Numerical results indicate that our technique is stable, accurate and converges successfully to a stationary solution as the cell size is reduced from the coarse lo the finest grid.  相似文献   

20.
In this paper, we propose a model based on a new contravariant integral form of the fully nonlinear Boussinesq equations in order to simulate wave transformation phenomena, wave breaking, and nearshore currents in computational domains representing the complex morphology of real coastal regions. The aforementioned contravariant integral form, in which Christoffel symbols are absent, is characterized by the fact that the continuity equation does not include any dispersive term. A procedure developed in order to correct errors related to the difficulties of numerically satisfying the metric identities in the numerical integration of fully nonlinear Boussinesq equation on generalized boundary‐conforming grids is presented. The Boussinesq equation system is numerically solved by a hybrid finite volume–finite difference scheme. The proposed high‐order upwind weighted essentially non‐oscillatory finite volume scheme involves an exact Riemann solver and is based on a genuinely two‐dimensional reconstruction procedure, which uses a convex combination of biquadratic polynomials. The wave breaking is represented by discontinuities of the weak solution of the integral form of the nonlinear shallow water equations. The capacity of the proposed model to correctly represent wave propagation, wave breaking, and wave‐induced currents is verified against test cases present in the literature. The results obtained are compared with experimental measures, analytical solutions, or alternative numerical solutions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号